A survey on free boundary identification of the truncated boundary in numerical BVPs on infinite intervals

A free boundary formulation for the numerical solution of boundary value problems on infinite intervals was proposed recently in Fazio (SIAM J. Numer. Anal 33 (1996) 1473). We consider here a survey on recent developments related to the free boundary identification of the truncated boundary. The goals of this survey are: to recall the reasoning for a free boundary identification of the truncated boundary, to report on a comparison of numerical results obtained for a classical test problem by three approaches available in the literature, and to propose some possible ways to extend the free boundary approach to the numerical solution of problems defined on the whole real line.

[1]  Riccardo Fazio,et al.  A Novel Approach to the Numerical Solution of Boundary Value Problems on Infinite Intervals , 1996 .

[2]  L. A. Rubel An estimate of the error due to the truncated boundary in the numerical solution of the Blasius equation , 1955 .

[3]  Riccardo Fazio,et al.  A Similarity Approach to the Numerical Solution of Free Boundary Problems , 1998, SIAM Rev..

[4]  L. Collatz The numerical treatment of differential equations , 1961 .

[5]  W. Beyn Numerical methods for dynamical systems , 1991 .

[6]  Marianela Lentini,et al.  The Von Karman Swirling Flows , 1980 .

[7]  Peter A. Markowich,et al.  Collocation methods for boundary value problems on “long” intervals , 1983 .

[8]  Melvin Epstein,et al.  On the Solution of the Laminar Boundary-Layer Equations , 1959 .

[9]  H. E. Salzer,et al.  Table errata: The numerical treatment of differential equations (third edition, Springer, Berlin, 1960) by L. Collatz , 1972 .

[10]  Andrew M. Stuart,et al.  The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations , 1993, SIAM J. Appl. Math..

[11]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[12]  James Demmel,et al.  Computing Connecting Orbits via an Improved Algorithm for Continuing Invariant Subspaces , 2000, SIAM J. Sci. Comput..

[13]  H. Schlichting Boundary Layer Theory , 1955 .

[14]  Mark J. Friedman,et al.  Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds , 1993 .

[15]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[16]  U. Ascher,et al.  Reformulation of Boundary Value Problems into “Standard” Form , 1981 .

[17]  H. Keller Accurate Difference Methods for Nonlinear Two-Point Boundary Value Problems , 1974 .

[18]  Ian Proudman,et al.  Boundary Layer Theory (fourth edition). By H. SCHLICHTINO. New York: McGraw-Hill, 1960. 647 pp. £6. 8s. , 1962, Journal of Fluid Mechanics.

[19]  Hermann Weyl,et al.  On the differential equations of the simplest boundary-layer problems , 1942 .

[20]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[21]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[22]  L. Fox The Numerical Solution of Two-Point Boundary Problems in Ordinary Differential Equations , 1957 .

[23]  Lixin Liu,et al.  Computation and Continuation of Homoclinic and Heteroclinic Orbits with Arclength Parameterization , 1997, SIAM J. Sci. Comput..

[24]  Riccardo Fazio Numerical Applications of the Scaling Concept , 1999 .

[25]  Riccardo Fazio,et al.  The Blasius problem formulated as a free boundary value problem , 1992 .

[26]  Wolf-Jürgen Beyn Global Bifurcations and their Numerical Computation , 1990 .

[27]  Peter A. Markowich Analysis of Boundary Value Problems on Infinite Intervals , 1983 .

[28]  Björn Sandstede,et al.  Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .

[29]  Approximate solution of boundary value problems on infinite intervals by collocation methods , 1986 .

[30]  Stephen Schecter,et al.  Numerical computation of saddle-node homoclinic bifurcation points , 1993 .

[31]  Peter A. Markowich A Theory for the Approximation of Solutions of Boundary Value Problems on Infinite Intervals , 1982 .

[32]  On the computation of solutions of boundary value problems on infinite intervals , 1987 .

[33]  Stephen Schecter,et al.  Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .

[34]  Riccardo Fazio,et al.  The falkneer-skan equation: Numerical solutions within group invariance theory , 1994 .

[35]  H. B. Keller,et al.  Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .

[36]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[37]  W. Tollmien,et al.  Über Flüssigkeitsbewegung bei sehr kleiner Reibung , 1961 .

[38]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[39]  S. Goldstein Modern developments in fluid dynamics , 1938 .

[40]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .