Local a posteriori estimates for the Stokes problem

We obtain computable estimates of the difference between an exact solution of the Stokes problem and an approximation from a respective energy class. The estimates are presented in terms of local norms and linear functionals. Certain generalizations to some nonlinear problems are discussed. Bibliography: 17 titles.

[1]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[2]  Sergey Korotov,et al.  A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery , 2003, J. Num. Math..

[3]  Sergey Repin,et al.  A Posteriori Estimates for the Stokes Problem , 2002 .

[4]  S. Repin A Posteriori Estimates in Local Norms , 2004 .

[5]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[6]  Gregory Seregin,et al.  Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids , 2001 .

[7]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[8]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[9]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[10]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[11]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[12]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[13]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[14]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[15]  Miloslav Feistauer,et al.  Mathematical Methods in Fluid Dynamics , 1993 .

[16]  S. Repin Estimates of Deviations for Generalized Newtonian Fluids , 2004 .