Renormalization group and field theoretic techniques for the analysis of the Lindstedt series

The Lindstedt series were introduced in the XIXth century in Astronomy to study perturbatively quasi-periodic motions in Celestial Mechanics. In Mathematical Physics, after getting the attention of Poincare, who studied them widely by pursuing to all orders the analysis of Lindstedt and Newcomb, their use was somehow superseded by other methods usually referred to as KAM theory. Only recently, after Eliasson’s work, they have been reconsidered as a tool to prove KAM-type results, in a spirit close to that of the Renormalization Group in quantum field theory. Following this new approach we discuss here the use of the Lindstedt series in the context of some model problems, like the standard map and natural generalizations, with particular attention to the properties of analyticity in the perturbative parameter.

[1]  E. Trubowitz,et al.  Renormalization in classical mechanics and many body quantum field theory , 1992 .

[2]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[3]  Guido Gentile,et al.  Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps , 2000 .

[4]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[5]  Scaling near resonances and complex rotation numbers for the standard map , 1994 .

[6]  Berretti,et al.  Standard map at complex rotation numbers: Creation of natural boundaries. , 1992, Physical review letters.

[7]  A. Berretti,et al.  Natural boundaries for area-preserving twist maps , 1992 .

[8]  I. Percival,et al.  Hamiltonian maps in the complex plane , 1981 .

[9]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[10]  A. Celletti Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .

[11]  Guido Gentile,et al.  Whiskered tori with prefixed frequencies and Lyapunov spectrum , 1995 .

[12]  A. Berretti,et al.  Limit at resonances of linearizations of some complex analytic dynamical systems , 2000, Ergodic Theory and Dynamical Systems.

[13]  L. H. Eliasson,et al.  Absolutely convergent series expansions for quasi periodic motions. , 1996 .

[14]  Luigi Chierchia,et al.  On the complex analytic structure of the golden invariant curve for the standard map , 1990 .

[15]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[16]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[17]  Alan Baker,et al.  DIOPHANTINE APPROXIMATION (Lecture Notes in Mathematics, 785) , 1981 .

[18]  E. Davis,et al.  Smithsonian contributions to knowledge , 1965 .

[19]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[20]  Guido Gentile,et al.  Quasi Linear Flows on Tori:¶Regularity of their Linearization , 1996, chao-dyn/9605017.

[21]  J. Stark,et al.  On the standard map critical function , 1992 .

[22]  Guido Gentile,et al.  Separatrix Splitting for Systems with Three Time Scales , 1999 .

[23]  Guido Gentile,et al.  Bryuno Function and the Standard Map , 1998, chao-dyn/9810035.

[24]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.

[25]  G. Gallavotti Invariant Tori: A Field theoretic point of view on Eliasson's work , 1993 .

[26]  G. Gentile,et al.  Tree expansion and multiscale analysis for KAM tori , 1995 .

[27]  Guido Gentile,et al.  A field theory approach to Lindstedt series for hyperbolic tori in three time scales problems , 1999 .

[28]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[29]  R. MacKay Greene's residue criterion , 1992 .

[30]  J Stark,et al.  On the standard map critical function , 1992 .

[31]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[32]  J. Laskar,et al.  Scaling law in the standard map critical function. Interpolating Hamiltonian and frequency map analysis , 2000, nlin/0003040.

[33]  V. Tikhomirov On the Preservation of Conditionally Periodic Motions Under Small Variations of the Hamilton Function , 1991 .

[34]  G. Gentile,et al.  Majorant series convergence for twistless KAM tori , 1995, Ergodic Theory and Dynamical Systems.

[35]  A. Davie,et al.  The critical function for the semistandard map , 1994 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[38]  G. Gentile,et al.  Field Theory and KAM tori , 1993, chao-dyn/9503006.

[39]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[40]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[41]  Guido Gentile,et al.  Scaling properties for the radius of convergence of a Lindstedt series: the standard map , 1999 .

[42]  G. Bryan,et al.  The Algebra of Invariants The Dynamical Theory of Gases A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , 1905, Nature.

[43]  O. Zubelevich,et al.  Invariant tori in hamiltonian systems with two degrees of freedom in neighborhood of resonance , 1998 .

[44]  A. Berretti,et al.  Periodic and Quasi-Periodic Orbits¶for the Standard Map , 2002 .

[45]  J. Craggs Applied Mathematical Sciences , 1973 .

[46]  Guido Gentile,et al.  Lindstedt series for perturbations of isochronous systems: a review of the general theory , 2002 .

[47]  Alberto Berretti,et al.  Scaling, perturbative renormalization and analyticity for the standard map and some generalizations , 1995 .

[48]  G. Gentile,et al.  On a conjecture for the critical behaviour of KAM tori , 1999, chao-dyn/9907014.

[49]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[50]  G. Gentile,et al.  KAM theorem revisited , 1996 .

[51]  A. Celletti Analysis of resonances in the spin-orbit problem in celestial mechanics , 1989 .

[52]  A Berretti,et al.  Shape of analyticity domains of Lindstedt series: the standard map. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[54]  Guido Gentile,et al.  Lindstedt series, ultraviolet divergences and Moser's theorem , 1995, chao-dyn/9511009.

[55]  Jacques Laskar,et al.  Introduction to Frequency Map Analysis , 1999 .

[56]  Singularities of periodic orbits near invariant curves , 2002 .

[57]  G. Gentile,et al.  METHODS FOR THE ANALYSIS OF THE LINDSTEDT SERIES FOR KAM TORI AND RENORMALIZABILITY IN CLASSICAL MECHANICS: A review with Some Applications , 1995, chao-dyn/9506004.

[58]  A. Berretti,et al.  Non-universal behaviour of scaling properties for generalized semistandard and standard maps , 2001 .