Renormalization group and field theoretic techniques for the analysis of the Lindstedt series
暂无分享,去创建一个
[1] E. Trubowitz,et al. Renormalization in classical mechanics and many body quantum field theory , 1992 .
[2] Jürgen Moser,et al. Lectures on Celestial Mechanics , 1971 .
[3] Guido Gentile,et al. Scaling properties for the radius of convergence of Lindstedt series: Generalized standard maps , 2000 .
[4] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[5] Scaling near resonances and complex rotation numbers for the standard map , 1994 .
[6] Berretti,et al. Standard map at complex rotation numbers: Creation of natural boundaries. , 1992, Physical review letters.
[7] A. Berretti,et al. Natural boundaries for area-preserving twist maps , 1992 .
[8] I. Percival,et al. Hamiltonian maps in the complex plane , 1981 .
[9] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[10] A. Celletti. Analysis of resonances in the spin-orbit problem in Celestial Mechanics: The synchronous resonance (Part I) , 1990 .
[11] Guido Gentile,et al. Whiskered tori with prefixed frequencies and Lyapunov spectrum , 1995 .
[12] A. Berretti,et al. Limit at resonances of linearizations of some complex analytic dynamical systems , 2000, Ergodic Theory and Dynamical Systems.
[13] L. H. Eliasson,et al. Absolutely convergent series expansions for quasi periodic motions. , 1996 .
[14] Luigi Chierchia,et al. On the complex analytic structure of the golden invariant curve for the standard map , 1990 .
[15] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[16] George D. Birkhoff,et al. Proof of Poincaré’s geometric theorem , 1913 .
[17] Alan Baker,et al. DIOPHANTINE APPROXIMATION (Lecture Notes in Mathematics, 785) , 1981 .
[18] E. Davis,et al. Smithsonian contributions to knowledge , 1965 .
[19] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[20] Guido Gentile,et al. Quasi Linear Flows on Tori:¶Regularity of their Linearization , 1996, chao-dyn/9605017.
[21] J. Stark,et al. On the standard map critical function , 1992 .
[22] Guido Gentile,et al. Separatrix Splitting for Systems with Three Time Scales , 1999 .
[23] Guido Gentile,et al. Bryuno Function and the Standard Map , 1998, chao-dyn/9810035.
[24] Giovanni Gallavotti,et al. Twistless KAM tori , 1993, chao-dyn/9306003.
[25] G. Gallavotti. Invariant Tori: A Field theoretic point of view on Eliasson's work , 1993 .
[26] G. Gentile,et al. Tree expansion and multiscale analysis for KAM tori , 1995 .
[27] Guido Gentile,et al. A field theory approach to Lindstedt series for hyperbolic tori in three time scales problems , 1999 .
[28] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[29] R. MacKay. Greene's residue criterion , 1992 .
[30] J Stark,et al. On the standard map critical function , 1992 .
[31] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[32] J. Laskar,et al. Scaling law in the standard map critical function. Interpolating Hamiltonian and frequency map analysis , 2000, nlin/0003040.
[33] V. Tikhomirov. On the Preservation of Conditionally Periodic Motions Under Small Variations of the Hamilton Function , 1991 .
[34] G. Gentile,et al. Majorant series convergence for twistless KAM tori , 1995, Ergodic Theory and Dynamical Systems.
[35] A. Davie,et al. The critical function for the semistandard map , 1994 .
[36] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[37] Giovanni Gallavotti,et al. TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.
[38] G. Gentile,et al. Field Theory and KAM tori , 1993, chao-dyn/9503006.
[39] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[40] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[41] Guido Gentile,et al. Scaling properties for the radius of convergence of a Lindstedt series: the standard map , 1999 .
[42] G. Bryan,et al. The Algebra of Invariants The Dynamical Theory of Gases A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , 1905, Nature.
[43] O. Zubelevich,et al. Invariant tori in hamiltonian systems with two degrees of freedom in neighborhood of resonance , 1998 .
[44] A. Berretti,et al. Periodic and Quasi-Periodic Orbits¶for the Standard Map , 2002 .
[45] J. Craggs. Applied Mathematical Sciences , 1973 .
[46] Guido Gentile,et al. Lindstedt series for perturbations of isochronous systems: a review of the general theory , 2002 .
[47] Alberto Berretti,et al. Scaling, perturbative renormalization and analyticity for the standard map and some generalizations , 1995 .
[48] G. Gentile,et al. On a conjecture for the critical behaviour of KAM tori , 1999, chao-dyn/9907014.
[49] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[50] G. Gentile,et al. KAM theorem revisited , 1996 .
[51] A. Celletti. Analysis of resonances in the spin-orbit problem in celestial mechanics , 1989 .
[52] A Berretti,et al. Shape of analyticity domains of Lindstedt series: the standard map. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] Peter Goldreich,et al. Spin-orbit coupling in the solar system , 1966 .
[54] Guido Gentile,et al. Lindstedt series, ultraviolet divergences and Moser's theorem , 1995, chao-dyn/9511009.
[55] Jacques Laskar,et al. Introduction to Frequency Map Analysis , 1999 .
[56] Singularities of periodic orbits near invariant curves , 2002 .
[57] G. Gentile,et al. METHODS FOR THE ANALYSIS OF THE LINDSTEDT SERIES FOR KAM TORI AND RENORMALIZABILITY IN CLASSICAL MECHANICS: A review with Some Applications , 1995, chao-dyn/9506004.
[58] A. Berretti,et al. Non-universal behaviour of scaling properties for generalized semistandard and standard maps , 2001 .