A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping

We present a Fourier continuation (FC) algorithm for the solution of the fully nonlinear compressible Navier-Stokes equations in general spatial domains. The new scheme is based on the recently introduced accelerated FC method, which enables use of highly accurate Fourier expansions as the main building block of general-domain PDE solvers. Previous FC-based PDE solvers are restricted to linear scalar equations with constant coefficients. The FC methodology presented in this text thus constitutes a significant generalization of the previous FC schemes, as it yields general-domain FC solvers for nonlinear systems of PDEs. While not restricted to periodic boundary conditions and therefore applicable to general boundary value problems on arbitrary domains, the proposed algorithm inherits many of the highly desirable properties arising from rapidly convergent Fourier expansions, including high-order convergence, essentially spectrally accurate dispersion relations, and much milder CFL constraints than those imposed by polynomial-based spectral methods-since, for example, the spectral radius of the FC first derivative grows linearly with the number of spatial discretization points. We demonstrate the accuracy and optimal parallel efficiency of the algorithm in a variety of scientific and engineering contexts relevant to fluid-dynamics and nonlinear acoustics.

[1]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[2]  Christopher K. W. Tam,et al.  Multi-size-mesh Multi-time-step Dispersion-relation-preserving Scheme for Multiple-scales Aeroacoustics Problems , 2003 .

[3]  Christopher K. W. Tam,et al.  Multi-size-mesh Multi-time-step Dispersion-relation-preserving Scheme for Multiple-scales Aeroacoustics Problems , 2002 .

[4]  J. Boyd A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .

[5]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[6]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[7]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[8]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[9]  Bernd R. Noack,et al.  Discrete Shedding Modes in the von Karman Vortex Street , 1993 .

[10]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[11]  John P. Boyd,et al.  Two Comments on Filtering (Artificial Viscosity) for Chebyshev and Legendre Spectral and Spectral Element Methods , 1998 .

[12]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[13]  B. Gustafsson High Order Difference Methods for Time Dependent PDE , 2008 .

[14]  Graham Ashcroft,et al.  Optimized prefactored compact schemes , 2003 .

[15]  Lloyd N. Trefethen,et al.  Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..

[16]  William D. Henshaw,et al.  Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement , 2008, J. Comput. Phys..

[17]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[18]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations , 2010, J. Comput. Phys..

[19]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[20]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[21]  Tim Colonius,et al.  A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems , 2009, J. Comput. Phys..

[22]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[23]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[24]  Oscar P. Bruno,et al.  Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics , 2003 .

[25]  H. C. Yee,et al.  Entropy Splitting and Numerical Dissipation , 2000 .

[26]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[27]  P. Morgan,et al.  A Parallel Overset Grid High-Order Flow Solver for Large Eddy Simulation , 2006, J. Sci. Comput..

[28]  Andrew J. Majda,et al.  The Fourier method for nonsmooth initial data , 1978 .

[29]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[30]  David I. Gottlieb,et al.  On the Removal of Boundary Errors Caused by Runge-Kutta Integration of Nonlinear Partial Differential Equations , 1994, SIAM J. Sci. Comput..

[31]  Oscar P. Bruno,et al.  Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis , 2007, J. Comput. Phys..

[32]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[33]  David I. Gottlieb,et al.  The Theoretical Accuracy of Runge-Kutta Time Discretizations for the Initial Boundary Value Problem: A Study of the Boundary Error , 1995, SIAM J. Sci. Comput..

[34]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[35]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements , 2010, J. Comput. Phys..

[36]  Gaston H. Gonnet,et al.  Scientific Computation , 2009 .

[37]  Thomas Hagstrom,et al.  Experiments with Hermite Methods for Simulating Compressible Flows: Runge-Kutta Time-Stepping and Absorbing Layers , 2007 .

[38]  S. Disney,et al.  On the Lambert W function: EOQ applications and pedagogical considerations , 2010 .

[39]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[40]  D. Gaitonde,et al.  Pade-Type Higher-Order Boundary Filters for the Navier-Stokes Equations , 2000 .

[41]  John P. Boyd,et al.  Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-PeriodicFunctions, PartI:Single-IntervalSchemes , 2009 .

[42]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[43]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[44]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[45]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[46]  Anne Gelb,et al.  Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .