Robust ordinal regression in preference learning and ranking

Multiple Criteria Decision Aiding (MCDA) offers a diversity of approaches designed for providing the decision maker (DM) with a recommendation concerning a set of alternatives (items, actions) evaluated from multiple points of view, called criteria. This paper aims at drawing attention of the Machine Learning (ML) community upon recent advances in a representative MCDA methodology, called Robust Ordinal Regression (ROR). ROR learns by examples in order to rank a set of alternatives, thus considering a similar problem as Preference Learning (ML-PL) does. However, ROR implements the interactive preference construction paradigm, which should be perceived as a mutual learning of the model and the DM. The paper clarifies the specific interpretation of the concept of preference learning adopted in ROR and MCDA, comparing it to the usual concept of preference learning considered within ML. This comparison concerns a structure of the considered problem, types of admitted preference information, a character of the employed preference models, ways of exploiting them, and techniques to arrive at a final ranking.

[1]  Eyke Hüllermeier,et al.  Learning Monotone Nonlinear Models Using the Choquet Integral , 2011, ECML/PKDD.

[2]  Craig Boutilier,et al.  Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets , 2010, NIPS.

[3]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[4]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[5]  Eyke Hüllermeier,et al.  Preference Learning and Ranking by Pairwise Comparison , 2010, Preference Learning.

[6]  Constantin Zopounidis,et al.  Preference disaggregation and statistical learning for multicriteria decision support: A review , 2011, Eur. J. Oper. Res..

[7]  Li Chen,et al.  User-Involved Preference Elicitation for Product Search and Recommender Systems , 2008, AI Mag..

[8]  Evangelos Grigoroudis,et al.  New Trends in Aggregation-Disaggregation Approaches , 2010 .

[9]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[10]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[11]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[12]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[13]  Chelsea C. White,et al.  An interactive procedure for aiding multiattribute alternative selection , 1983 .

[14]  Matthew Lease,et al.  Active learning to maximize accuracy vs. effort in interactive information retrieval , 2011, SIGIR.

[15]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[16]  Michel Beuthe,et al.  Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..

[17]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[18]  Bernard De Baets,et al.  Kernel-based learning methods for preference aggregation , 2009, 4OR.

[19]  Olvi L. Mangasarian,et al.  Generalized Support Vector Machines , 1998 .

[20]  Burr Settles,et al.  Active Learning , 2012, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[21]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[22]  Shotaro Akaho,et al.  A Survey and Empirical Comparison of Object Ranking Methods , 2010, Preference Learning.

[23]  S. Greco,et al.  Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making , 2013 .

[24]  Craig Boutilier,et al.  Local Utility Elicitation in GAI Models , 2005, UAI.

[25]  Klaus Obermayer,et al.  Regression Models for Ordinal Data: A Machine Learning Approach , 1999 .

[26]  Jürgen Branke,et al.  Interactive Multiobjective Optimization from a Learning Perspective , 2008, Multiobjective Optimization.

[27]  Panos M. Pardalos,et al.  Handbook of Multicriteria Analysis , 2010 .

[28]  Wei Chu,et al.  Preference learning with Gaussian processes , 2005, ICML.

[29]  A. J. Feelders Monotone Relabeling in Ordinal Classification , 2010, 2010 IEEE International Conference on Data Mining.

[30]  Craig Boutilier,et al.  Elicitation of Factored Utilities , 2008, AI Mag..

[31]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[32]  Bernard Roy,et al.  À propos de la signification des dépendances entre critères : quelle place et quels modes de prise en compte pour l'aide à la décision ? , 2009, RAIRO Oper. Res..

[33]  Eyke Hüllermeier,et al.  Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking , 2012, IEEE Transactions on Fuzzy Systems.

[34]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[35]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[36]  Salvatore Greco,et al.  Robust ordinal regression for value functions handling interacting criteria , 2014, Eur. J. Oper. Res..

[37]  Filip Radlinski,et al.  Active exploration for learning rankings from clickthrough data , 2007, KDD '07.

[38]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[39]  Dong Wang,et al.  A general magnitude-preserving boosting algorithm for search ranking , 2009, CIKM.

[40]  B. Roy Paradigms and Challenges , 2005 .

[41]  Cynthia Rudin,et al.  The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List , 2009, J. Mach. Learn. Res..

[42]  Jacek Malczewski,et al.  Multiple Criteria Decision Analysis and Geographic Information Systems , 2010, Trends in Multiple Criteria Decision Analysis.

[43]  Xin Li,et al.  Incorporating robustness into web ranking evaluation , 2009, CIKM.

[44]  Radu Herbei,et al.  Classification with reject option , 2006 .

[45]  Kalyanmoy Deb,et al.  Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead , 2008, Manag. Sci..

[46]  Eyke Hüllermeier,et al.  Preference Learning: An Introduction , 2010, Preference Learning.

[47]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[48]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[49]  Yves Grandvalet,et al.  Support Vector Machines with a Reject Option , 2008, NIPS.

[50]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[51]  Roman Słowiński,et al.  RUTA: a framework for assessing and selecting additive value functions on the basis of rank related requirements , 2013 .

[52]  Tao Qin,et al.  Ranking with multiple hyperplanes , 2007, SIGIR.

[53]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.

[54]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[55]  Patrick Gallinari,et al.  Ranking with ordered weighted pairwise classification , 2009, ICML '09.

[56]  Theodor J. Stewart,et al.  Dealing with uncertainties in MCDA (Multi-criteria decision analysis) , 2005 .

[57]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[58]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[59]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..

[60]  Peter L. Bartlett,et al.  Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..

[61]  William Nick Street,et al.  Learning to Rank by Maximizing AUC with Linear Programming , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[62]  S. Greco,et al.  Extreme ranking analysis in robust ordinal regression , 2012 .

[63]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[64]  V. Srinivasan,et al.  Linear Programming Computational Procedures for Ordinal Regression , 1976, J. ACM.

[65]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[66]  Philippe Vincke,et al.  Robust solutions and methods in decision‐aid , 1999 .

[67]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..

[68]  B. Roy Two conceptions of decision aiding , 2010 .

[69]  Thomas J. Walsh,et al.  Learning Lexicographic Preference Models , 2010, Preference Learning.

[70]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[71]  Constantin Zopounidis,et al.  Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..

[72]  Patrick Meyer,et al.  An empirical comparison of the expressiveness of the additive value function and the Choquet integral models for representing rankings , 2010 .

[73]  Mehryar Mohri,et al.  Magnitude-preserving ranking algorithms , 2007, ICML '07.

[74]  Bernard De Baets,et al.  A Survey on ROC-based Ordinal Regression , 2010, Preference Learning.

[75]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[76]  T. Bewley Knightian decision theory. Part I , 2002 .

[77]  William W. Cohen,et al.  A Meta-Learning Approach for Robust Rank Learning , 2008 .

[78]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .