Robust ordinal regression in preference learning and ranking
暂无分享,去创建一个
Milosz Kadzinski | Salvatore Greco | Salvatore Corrente | Roman Slowinski | S. Greco | R. Słowiński | M. Kadziński | Salvatore Corrente | Miłosz Kadziński
[1] Eyke Hüllermeier,et al. Learning Monotone Nonlinear Models Using the Choquet Integral , 2011, ECML/PKDD.
[2] Craig Boutilier,et al. Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets , 2010, NIPS.
[3] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[4] John Law,et al. Robust Statistics—The Approach Based on Influence Functions , 1986 .
[5] Eyke Hüllermeier,et al. Preference Learning and Ranking by Pairwise Comparison , 2010, Preference Learning.
[6] Constantin Zopounidis,et al. Preference disaggregation and statistical learning for multicriteria decision support: A review , 2011, Eur. J. Oper. Res..
[7] Li Chen,et al. User-Involved Preference Elicitation for Product Search and Recommender Systems , 2008, AI Mag..
[8] Evangelos Grigoroudis,et al. New Trends in Aggregation-Disaggregation Approaches , 2010 .
[9] Matthias Ehrgott,et al. Trends in Multiple Criteria Decision Analysis , 2010 .
[10] J. March. Bounded rationality, ambiguity, and the engineering of choice , 1978 .
[11] I. Gilboa,et al. Maxmin Expected Utility with Non-Unique Prior , 1989 .
[12] M. Grabisch. The application of fuzzy integrals in multicriteria decision making , 1996 .
[13] Chelsea C. White,et al. An interactive procedure for aiding multiattribute alternative selection , 1983 .
[14] Matthew Lease,et al. Active learning to maximize accuracy vs. effort in interactive information retrieval , 2011, SIGIR.
[15] Thore Graepel,et al. Large Margin Rank Boundaries for Ordinal Regression , 2000 .
[16] Michel Beuthe,et al. Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..
[17] Milosz Kadzinski,et al. Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..
[18] Bernard De Baets,et al. Kernel-based learning methods for preference aggregation , 2009, 4OR.
[19] Olvi L. Mangasarian,et al. Generalized Support Vector Machines , 1998 .
[20] Burr Settles,et al. Active Learning , 2012, Synthesis Lectures on Artificial Intelligence and Machine Learning.
[21] Luis C. Dias,et al. Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..
[22] Shotaro Akaho,et al. A Survey and Empirical Comparison of Object Ranking Methods , 2010, Preference Learning.
[23] S. Greco,et al. Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making , 2013 .
[24] Craig Boutilier,et al. Local Utility Elicitation in GAI Models , 2005, UAI.
[25] Klaus Obermayer,et al. Regression Models for Ordinal Data: A Machine Learning Approach , 1999 .
[26] Jürgen Branke,et al. Interactive Multiobjective Optimization from a Learning Perspective , 2008, Multiobjective Optimization.
[27] Panos M. Pardalos,et al. Handbook of Multicriteria Analysis , 2010 .
[28] Wei Chu,et al. Preference learning with Gaussian processes , 2005, ICML.
[29] A. J. Feelders. Monotone Relabeling in Ordinal Classification , 2010, 2010 IEEE International Conference on Data Mining.
[30] Craig Boutilier,et al. Elicitation of Factored Utilities , 2008, AI Mag..
[31] Yoram Singer,et al. An Efficient Boosting Algorithm for Combining Preferences by , 2013 .
[32] Bernard Roy,et al. À propos de la signification des dépendances entre critères : quelle place et quels modes de prise en compte pour l'aide à la décision ? , 2009, RAIRO Oper. Res..
[33] Eyke Hüllermeier,et al. Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking , 2012, IEEE Transactions on Fuzzy Systems.
[34] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[35] José Rui Figueira,et al. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..
[36] Salvatore Greco,et al. Robust ordinal regression for value functions handling interacting criteria , 2014, Eur. J. Oper. Res..
[37] Filip Radlinski,et al. Active exploration for learning rankings from clickthrough data , 2007, KDD '07.
[38] J. Siskos. Assessing a set of additive utility functions for multicriteria decision-making , 1982 .
[39] Dong Wang,et al. A general magnitude-preserving boosting algorithm for search ranking , 2009, CIKM.
[40] B. Roy. Paradigms and Challenges , 2005 .
[41] Cynthia Rudin,et al. The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List , 2009, J. Mach. Learn. Res..
[42] Jacek Malczewski,et al. Multiple Criteria Decision Analysis and Geographic Information Systems , 2010, Trends in Multiple Criteria Decision Analysis.
[43] Xin Li,et al. Incorporating robustness into web ranking evaluation , 2009, CIKM.
[44] Radu Herbei,et al. Classification with reject option , 2006 .
[45] Kalyanmoy Deb,et al. Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead , 2008, Manag. Sci..
[46] Eyke Hüllermeier,et al. Preference Learning: An Introduction , 2010, Preference Learning.
[47] Salvatore Greco,et al. Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..
[48] Salvatore Greco,et al. Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.
[49] Yves Grandvalet,et al. Support Vector Machines with a Reject Option , 2008, NIPS.
[50] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[51] Roman Słowiński,et al. RUTA: a framework for assessing and selecting additive value functions on the basis of rank related requirements , 2013 .
[52] Tao Qin,et al. Ranking with multiple hyperplanes , 2007, SIGIR.
[53] Quoc V. Le,et al. Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.
[54] Bernard Roy,et al. Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..
[55] Patrick Gallinari,et al. Ranking with ordered weighted pairwise classification , 2009, ICML '09.
[56] Theodor J. Stewart,et al. Dealing with uncertainties in MCDA (Multi-criteria decision analysis) , 2005 .
[57] Milosz Kadzinski,et al. Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..
[58] Wlodzimierz Ogryczak,et al. From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..
[59] Wei Chu,et al. Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..
[60] Peter L. Bartlett,et al. Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..
[61] William Nick Street,et al. Learning to Rank by Maximizing AUC with Linear Programming , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.
[62] S. Greco,et al. Extreme ranking analysis in robust ordinal regression , 2012 .
[63] Tie-Yan Liu,et al. Learning to Rank for Information Retrieval , 2011 .
[64] V. Srinivasan,et al. Linear Programming Computational Procedures for Ordinal Regression , 1976, J. ACM.
[65] R. L. Keeney,et al. Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[66] Philippe Vincke,et al. Robust solutions and methods in decision‐aid , 1999 .
[67] Salvatore Greco,et al. Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..
[68] B. Roy. Two conceptions of decision aiding , 2010 .
[69] Thomas J. Walsh,et al. Learning Lexicographic Preference Models , 2010, Preference Learning.
[70] Abraham Charnes,et al. Optimal Estimation of Executive Compensation by Linear Programming , 1955 .
[71] Constantin Zopounidis,et al. Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..
[72] Patrick Meyer,et al. An empirical comparison of the expressiveness of the additive value function and the Choquet integral models for representing rankings , 2010 .
[73] Mehryar Mohri,et al. Magnitude-preserving ranking algorithms , 2007, ICML '07.
[74] Bernard De Baets,et al. A Survey on ROC-based Ordinal Regression , 2010, Preference Learning.
[75] Milosz Kadzinski,et al. Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..
[76] T. Bewley. Knightian decision theory. Part I , 2002 .
[77] William W. Cohen,et al. A Meta-Learning Approach for Robust Rank Learning , 2008 .
[78] Ralph L. Keeney,et al. Decisions with multiple objectives: preferences and value tradeoffs , 1976 .