A search for the minimum number of stations needed for seismic networking on Mars
暂无分享,去创建一个
[1] W. Folkner,et al. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.
[2] Y. Fei,et al. Mineralogy of the Martian interior up to core‐mantle boundary pressures , 1997 .
[3] E. Standish,et al. Martian precession and rotation from Viking lander range data , 1997 .
[4] Tilman Spohn,et al. The interior structure of Mars: Implications from SNC meteorites , 1997 .
[5] A. Chicarro,et al. A catalogue of potential landing sites for the INTERMARSNET mission , 1996 .
[6] Y. Fei,et al. CONSTRAINTS ON THE MINERALOGY OF AN IRON-RICH MARTIAN MANTLE FROM HIGH-PRESSURE EXPERIMENTS , 1996 .
[7] Philippe Lognonné,et al. Ultra broad band seismology on InterMarsNet , 1996 .
[8] T. Gudkova,et al. The exploration of Martian interiors using the spheroidal oscillation method , 1996 .
[9] C. Sotin,et al. Theoretical seismic models of Mars : the importance of the iron content of the mantle , 1996 .
[10] T. Gudkova,et al. ON INVESTIGATION OF MARTIAN CRUST STRUCTURE USING THE FREE OSCILLATION METHOD , 1996 .
[11] George Papanicolaou,et al. Stability of the P-to-S energy ratio in the diffusive regime , 1996, Bulletin of the Seismological Society of America.
[12] H. Mao,et al. Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars , 1995, Science.
[13] Kenneth L. Tanaka,et al. A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.
[14] K. Aki. Scattering conversions P to S versus S to P , 1992, Bulletin of the Seismological Society of America.
[15] R. Boehler. Melting of the FeFeO and the FeFeS systems at high pressure: Constraints on core temperatures , 1992 .
[16] Don L. Anderson,et al. Scientific rationale and requirements for a global seismic network on Mars. Report of a workshop. , 1991 .
[17] M. Chapront-Touzé. Orbits of the Martian satellites from ESAPHO and ESADE theories , 1990 .
[18] William H. Press,et al. Numerical recipes , 1990 .
[19] Tilman Spohn,et al. Thermal history of Mars and the sulfur content of its core , 1990 .
[20] D. Turcotte,et al. Origin and thermal evolution of Mars. , 1990 .
[21] D. L. Anderson. Theory of Earth , 2014 .
[22] H. Wänke,et al. Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[23] H. McSween. SNC meteorites: Clues to Martian petrologic evolution? , 1985 .
[24] G. Dreibus,et al. Mars, a Volatile-Rich Planet , 1985 .
[25] J. Koyama,et al. Seismic Q of the lunar upper mantle , 1982 .
[26] D. L. Anderson,et al. Absorption band Q model for the Earth , 1982 .
[27] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[28] Don L. Anderson,et al. The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble , 1979 .
[29] J. Burns,et al. Past obliquity oscillations of Mars: The role of the Tharsis Uplift , 1979 .
[30] Alfred Edward Ringwood,et al. Origin of the Earth and Moon , 1979 .
[31] K. Lambeck. On the orbital evolution of the Martian satellites , 1979 .
[32] D. L. Anderson,et al. Theoretical models for Mars and their seismic properties , 1978 .
[33] M. Toksoz,et al. Elastic wave propagation in a highly scattering medium - A diffusion approach , 1977 .
[34] G. Born,et al. Secular acceleration of Phobos and Q of Mars. [tidal dissipation function of Mars] , 1976 .
[35] M. Toksöz,et al. Thermal evolutions of the terrestrial planets , 1975 .
[36] K. Anderson,et al. Seismic scattering and shallow structure of the moon in oceanus procellarum , 1974 .
[37] Tomowo Hirasawa,et al. Body wave spectra from propagating shear cracks. , 1973 .
[38] K. E. Bullen,et al. An Introduction to the Theory of Seismology , 1964 .
[39] B. P. Sharpless. Secular accelerations in the longitudes of the satellites of Mars , 1945 .