Epitaxial Growth of Large Area Single-Crystalline Few-Layer MoS2 with Room Temperature Mobility of 192 cm2V-1s-1

We report on the vapor-solid growth of single crystalline few-layer MoS2 films on (0001)-oriented sapphire with excellent structural and electrical properties over centimeter length scale. High-resolution X-ray diffraction scans indicated that the films had good out-of-plane ordering and epitaxial registry. A carrier density of ~2 x 1011 cm-2 and a room temperature mobility of 192 cm2/Vs were extracted from space-charge limited transport regime in the films. The electron mobility was found to exhibit in-plane anisotropy with a ratio of ~ 1.8. Theoretical estimates of the temperature-dependent electron mobility including optical phonon, acoustic deformation potential and remote ionized impurity scattering were found to satisfactorily match the measured data. The synthesis approach reported here demonstrates the feasibility of device quality few-layer MoS2 films with excellent uniformity and high quality.

[1]  M. Fischetti,et al.  Mobility enhancement and temperature dependence in top-gated single-layer MoS2 , 2013, 1409.1084.

[2]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[3]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[4]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[5]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[6]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[7]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[8]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[9]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[10]  Liying Jiao,et al.  Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. , 2013, Journal of the American Chemical Society.

[11]  Xiaodong Xu,et al.  Vapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization. , 2013, ACS nano.

[12]  Siddharth Rajan,et al.  Large Area Single Crystal (0001) Oriented MoS2 Thin Films , 2013, 1302.3177.

[13]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[14]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[15]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[16]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[17]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[18]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[19]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[20]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[21]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[22]  S. Larentis,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012, 1211.3096.

[23]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[24]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[25]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[26]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[27]  A. Seabaugh,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[28]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[29]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[30]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[33]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[34]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[35]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[36]  M. Hove,et al.  Structure of the alpha-Al2O3(0001) surface from low-energy electron diffraction: Al termination and evidence for anomalously large thermal vibrations , 2002 .

[37]  G. Jakovidis,et al.  MoS/sub 2/ growth using physical vapor deposition , 2000, COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices.

[38]  A. Saidane The Physics of Low-dimensional Semiconductors: An Introduction; J.H. Davies, Cambridge University Press, UK, ISBN 0-521-48491-X, $44.95 , 2000 .

[39]  A. Koma Van der Waals epitaxy for highly lattice-mismatched systems , 1999 .

[40]  A. Barbier,et al.  Determination of the α-Ai2O3(0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods , 1998 .

[41]  J. Rabalais,et al.  Composition and structure of the Al2O3{0001}-(1 × 1) surface , 1997 .

[42]  J. Bernède,et al.  MS2 (M = W, Mo) photosensitive thin films for solar cells , 1997 .

[43]  G. Effenberg,et al.  Pressure dependent phase diagrams of binary alloys , 1997 .

[44]  M. Stroscio,et al.  Polar optical-phonon scattering in three- and two-dimensional electron gases , 1995 .

[45]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[46]  Ellis,et al.  First-principles calculation of the electronic structure of sapphire: Bulk states. , 1992, Physical review. B, Condensed matter.

[47]  Bruce A. Parkinson,et al.  Growth of MoSe2 thin films with Van der Waals epitaxy , 1991 .

[48]  K. Ueno,et al.  Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica , 1990 .

[49]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[50]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[51]  A. Moore,et al.  Water Adsorption on Molybdenum Disulfide Containing Surface Contaminants , 1964 .

[52]  R. Frindt,et al.  Physical properties of layer structures : optical properties and photoconductivity of thin crystals of molybdenum disulphide , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.