Out of Equilibrium Chemical Systems Fueled by Trichloroacetic Acid

[1]  C. Tian,et al.  Transamidation-Driven Molecular Pumps , 2022, Journal of the American Chemical Society.

[2]  I. Leito,et al.  A Chemically Fuelled Molecular Automaton Displaying Programmed Migration of Zn2+ Between Alternative Binding Sites , 2022, Chemistry.

[3]  Benjamin M. W. Roberts,et al.  Chemical fuels for molecular machinery , 2022, Nature Chemistry.

[4]  J. Badjić,et al.  Dissipative Formation of Covalent Basket Cages , 2022, Angewandte Chemie.

[5]  Jean‐Valère Naubron,et al.  Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. , 2022, ACS applied materials & interfaces.

[6]  Benjamin M. W. Roberts,et al.  Autonomous fuelled directional rotation about a covalent single bond , 2022, Nature.

[7]  S. Di Stefano,et al.  Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. , 2022, Chemistry.

[8]  A. Quintard,et al.  Trichloroacetic acid fueled practical amine purifications , 2022, Beilstein journal of organic chemistry.

[9]  Daniel J. Tetlow,et al.  Pumping between phases with a pulsed-fuel molecular ratchet , 2021, Nature Nanotechnology.

[10]  M. Schmittel,et al.  Fuel Acid Drives Base Catalysis and Supramolecular Cage-to-Device Transformation under Dissipative Conditions. , 2021, Organic letters.

[11]  D. Leigh,et al.  Chemical engines: driving systems away from equilibrium through catalyst reaction cycles , 2021, Nature Nanotechnology.

[12]  O. Borodin,et al.  Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange , 2021, Journal of the American Chemical Society.

[13]  M. Schmittel,et al.  Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I). , 2021, Journal of the American Chemical Society.

[14]  E. Olivieri,et al.  Chemically Fueled Three-State Chiroptical Switching Supramolecular Gel with Temporal Control. , 2021, Journal of the American Chemical Society.

[15]  D. Leigh,et al.  A catalysis-driven artificial molecular pump , 2021, Nature.

[16]  Amit K. Ghosh,et al.  Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. , 2021, Journal of the American Chemical Society.

[17]  A. Quintard Copper Catalyzed Decarboxylative Functionalization of Ketoacids , 2021, The chemical record.

[18]  R. Klajn,et al.  Dissipative Self-Assembly: Fueling with Chemicals versus Light , 2021, Chem.

[19]  G. Ercolani,et al.  Time Programmable Locking/Unlocking of the Calix[4]arene Scaffold by Means of Chemical Fuels. , 2020, Chemistry.

[20]  T. Hermans,et al.  Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self‐Assembly , 2020, Advanced materials.

[21]  Stefano Di Stefano,et al.  Abiotic Chemical Fuels for the Operation of Molecular Machines. , 2020, Angewandte Chemie.

[22]  T. Hermans,et al.  Re-Programming Hydrogel Properties using a Fuel-driven Reaction Cycle. , 2019, Journal of the American Chemical Society.

[23]  Kimoon Kim,et al.  Fuel-Driven Transient Crystallization of a Cucurbit[8]uril-Based Host-Guest Complex. , 2019, Angewandte Chemie.

[24]  D. Leigh,et al.  Dissipative Catalysis with a Molecular Machine , 2019, Angewandte Chemie.

[25]  M. Lucarini,et al.  2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid-Base-Operated Paramagnetic Molecular Switch. , 2019, The Journal of organic chemistry.

[26]  A. Marion,et al.  Simple Tyrosine Derivatives Act as Low Molecular Weight Organogelators , 2019, Scientific Reports.

[27]  Ignacio Colomer,et al.  A chemically fuelled self-replicator , 2019, Nature Communications.

[28]  Ignacio Colomer,et al.  A transient self-assembling self-replicator , 2018, Nature Communications.

[29]  Amit K. Ghosh,et al.  Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel. , 2018, Organic letters.

[30]  Daniel J. Tetlow,et al.  Rotary and linear molecular motors driven by pulses of a chemical fuel , 2017, Science.

[31]  C. Hartley,et al.  Dissipative Assembly of Aqueous Carboxylic Acid Anhydrides Fueled by Carbodiimides. , 2017, Journal of the American Chemical Society.

[32]  Jean Rodriguez,et al.  Bicatalyzed Three-Component Stereoselective Decarboxylative Fluoro-Aldolization for the Construction of Elongated Fluorohydrins , 2017 .

[33]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[34]  S. Maiti,et al.  Dissipative self-assembly of vesicular nanoreactors. , 2016, Nature chemistry.

[35]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[36]  L. Mandolini,et al.  Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch. , 2016, Angewandte Chemie.

[37]  H. Wennemers,et al.  Enantioselective aldol reactions with masked fluoroacetates. , 2016, Nature chemistry.

[38]  T. Takata,et al.  Solid-state Rotaxane Switch: Synthesis of Thermoresponsive Rotaxane Shuttle Utilizing a Thermally Decomposable Acid , 2016 .

[39]  Jonathan R. Nitschke,et al.  Fuel-Controlled Reassembly of Metal–Organic Architectures , 2015, ACS central science.

[40]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[41]  C. Song,et al.  Organocatalytic enantioselective decarboxylative aldol reaction of malonic acid half thioesters with aldehydes. , 2013, Angewandte Chemie.

[42]  Zu-Li Wang,et al.  Recent Advances in Catalytic Asymmetric Decarboxylative Addition Reactions , 2013 .

[43]  S. Uchida,et al.  Thermoresponsive shuttling of rotaxane containing trichloroacetate ion. , 2012, Organic letters.

[44]  Choon‐Hong Tan,et al.  Catalytic Decarboxylative Reactions: Biomimetic Approaches Inspired by Polyketide Biosynthesis , 2011 .

[45]  Job Boekhoven,et al.  Dissipative self-assembly of a molecular gelator by using a chemical fuel. , 2010, Angewandte Chemie.

[46]  M. Shair,et al.  Catalytic enantioselective thioester aldol reactions that are compatible with protic functional groups. , 2005, Journal of the American Chemical Society.

[47]  M. Shair,et al.  An exceptionally mild catalytic thioester aldol reaction inspired by polyketide biosynthesis. , 2003, Journal of the American Chemical Society.

[48]  R. Weiss,et al.  Chemically reversible organogels: aliphatic amines as "latent" gelators with carbon dioxide. , 2001, Journal of the American Chemical Society.

[49]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[50]  B. Brown The mechanism of thermal decarboxylation , 1951 .

[51]  F. H. Verhoek The Kinetics of the Decomposition of the Trichloroacetates in Various Solvents1 , 1934 .

[52]  W. C. Bray A PERIODIC REACTION IN HOMOGENEOUS SOLUTION AND ITS RELATION TO CATALYSIS. , 1921 .