Entropy-based Adaptive Supersampling

Ray tracing usually needs supersampling to reduce aliasingor noise in the final image. Not all the pixels in the image require the same quantity of rays, thusadaptive supersampling is implemented by adaptive subdivision of the sampling region, resulting in a refinement tree. We prese nt here a theoretically sound adaptive supersampling method based on entropy, an information theory approach wit h strong analogies to the decision tree problem where entropy is frequently used as a decision criterion. Ou r adaptive supersampling algorithm is implemented within a path tracing method and we show that our results comp are well to the ones obtained by a classic strategy.

[1]  Amitabh Varshney,et al.  Navigating static environments using image-space simplification and morphing , 1997, SI3D.

[2]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[3]  I. K. Sethi,et al.  Hierarchical Classifier Design Using Mutual Information , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  L. d Costa,et al.  Multiresolution Representation and Reconstruction of Adaptively Sampled Images , 1996 .

[5]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[6]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[7]  Christophe Schlick An Adaptive Sampling Technique for Multidimensional Integration by Ray-Tracing , 1994 .

[8]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[9]  Ryutarou Ohbuchi,et al.  Quasi-Monte Carlo rendering with adaptive sampling , 1996 .

[10]  László Szirmay-Kalos,et al.  MONTE-CARLO METHODS IN GLOBAL ILLUMINATION , 2000 .

[11]  T. Caelli Visual Perception: Theory and Practice , 1981 .

[12]  Mateu Sbert,et al.  New Contrast Measures for Pixel Supersampling , 2002 .

[13]  Usama M. Fayyad,et al.  The Attribute Selection Problem in Decision Tree Generation , 1992, AAAI.

[14]  Carlo H. Séquin,et al.  Tapestry: A Dynamic Mesh-based Display Representation for Interactive Rendering , 2000, Rendering Techniques.

[15]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[16]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[17]  Satosi Watanabe,et al.  Pattern recognition as a quest for minimum entropy , 1981, Pattern Recognit..

[18]  Linda G. Shapiro,et al.  View-base Rendering: Visualizing Real Objects from Scanned Range and Color Data , 1997, Rendering Techniques.

[19]  Henrik Wann Jensen,et al.  Adaptive Smpling and Bias Estimation in Path Tracing , 1997, Rendering Techniques.

[20]  James T. Kajiya,et al.  The rendering equation , 1998 .

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .