A direct sampling method for electrical impedance tomography

This work investigates the electrical impedance tomography (EIT) problem in the case when only one or two pairs of Cauchy data is available, which is known to be very difficult in achieving high reconstruction quality owing to its severely ill-posed nature. We propose a simple and efficient direct sampling method (DSM) to locate inhomogeneous inclusions. A new probing function based on the dipole potential is introduced to construct an indicator function for imaging the inclusions. Explicit formulae for the probing and indicator functions are derived in the case when the sampling domain is of spherical geometry in (n = 2, 3). This new method is easy to implement and computationally cheap. Numerical experiments are presented to demonstrate the robustness and effectiveness of the DSM, which provides a new numerical approach for solving the EIT problem.

[1]  Roland Potthast,et al.  A study on orthogonality sampling , 2010 .

[2]  Richard Bayford,et al.  Biomedical applications of electrical impedance tomography , 2004 .

[3]  Bangti Jin,et al.  A direct sampling method to an inverse medium scattering problem , 2012 .

[4]  E. Somersalo,et al.  Inverse problems with structural prior information , 1999 .

[5]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[6]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[7]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[8]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[9]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[10]  William R B Lionheart EIT reconstruction algorithms: pitfalls, challenges and recent developments. , 2004, Physiological measurement.

[11]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[12]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..

[13]  L. Rondi On the regularization of the inverse conductivity problem with discontinuous conductivities , 2008 .

[14]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[15]  Ramon Pallas-Areny,et al.  Electrical resistance tomography to detect leaks from buried pipes , 2001 .

[16]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[17]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[18]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[19]  P. Maass,et al.  Function spaces and optimal currents in impedance tomography , 2011 .

[20]  J Jossinet,et al.  The impedivity of freshly excised human breast tissue , 1998, Physiological measurement.

[21]  P. Maass,et al.  Sparsity regularization for parameter identification problems , 2012 .

[22]  B. Brown,et al.  Applied potential tomography. , 1989, Journal of the British Interplanetary Society.

[23]  A. Constantinescu,et al.  A non-iterative sampling approach using noise subspace projection for EIT , 2012 .

[24]  Roland Potthast,et al.  The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering , 2003 .

[25]  Birgit Schappel,et al.  The Factorization Method for Electrical Impedance Tomography in the Half-Space , 2008, SIAM J. Appl. Math..

[26]  Bangti Jin,et al.  A reconstruction algorithm for electrical impedance tomography based on sparsity regularization , 2012 .

[27]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[28]  Jérôme Idier,et al.  A FEM-based nonlinear MAP estimator in electrical impedance tomography , 1997, Proceedings of International Conference on Image Processing.

[29]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[30]  Editors , 1986, Brain Research Bulletin.

[31]  S. Aarseth,et al.  Numerical Experiments , 2014, 1411.4939.

[32]  Andy Adler,et al.  In Vivo Impedance Imaging With Total Variation Regularization , 2010, IEEE Transactions on Medical Imaging.

[33]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[34]  Marc Bonnet,et al.  Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions , 2009 .

[35]  A.J. Devaney Time reversal imaging of obscured targets from multistatic data , 2005, IEEE Transactions on Antennas and Propagation.

[36]  K. Leblebicioglu,et al.  Analytic and semi-analytic solutions in electrical impedance tomography: I. Two-dimensional problems. , 1995, Physiological measurement.

[37]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[38]  Jun Zou,et al.  A Direct Sampling Method for Inverse Scattering Using Far-Field Data , 2012, 1206.0727.

[39]  C. Sebu,et al.  Conductivity imaging with interior potential measurements , 2011 .

[40]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[41]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[42]  G. Arfken Mathematical Methods for Physicists , 1967 .

[43]  R H Bayford,et al.  Bioimpedance tomography (electrical impedance tomography). , 2006, Annual review of biomedical engineering.

[44]  David Isaacson,et al.  Thoracic Impedance Images During Ventilation , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[45]  T. Kolokolnikov,et al.  Recovering multiple small inclusions in a three-dimensional domain using a single measurement , 2015 .

[46]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[47]  R H Bayford,et al.  The effect of layers in imaging brain function using electrical impedance tomograghy. , 2004, Physiological measurement.

[48]  Leah Blau,et al.  Polarization And Moment Tensors With Applications To Inverse Problems And Effective Medium Theory , 2016 .

[49]  P. Sabatier,et al.  On the resolving power of electrical impedance tomography , 2007 .

[50]  G. Keller,et al.  The Geoelectrical Methods in Geophysical Exploration , 1994 .

[51]  P. Maass,et al.  Tikhonov regularization for electrical impedance tomography on unbounded domains , 2003 .

[52]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[53]  David S. Holder Electrical impedance tomography , 2005 .

[54]  Habib Ammari,et al.  Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory , 2010 .

[55]  A. E. Badia,et al.  An Inverse Source Problem in Potential Analysis , 2000 .

[56]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[57]  D. Griffiths Introduction to Electrodynamics , 2017 .

[58]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[59]  Michael Pidcock,et al.  Crack detection using electrostatic measurements , 2001 .

[60]  N. Holmer,et al.  Electrical Impedance Tomography , 1991 .

[61]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[62]  Masaru Ikehata,et al.  Reconstruction of inclusion from boundary measurements , 2018, 1803.02937.

[63]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[64]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .