Positive real lemmas for fractional order systems

This paper is concerned with the positive realness of fractional order linear time-invariant systems with the commensurate order 0 <; α <; 2. Sufficient and necessary condition for a fractional order system to be positive real is derived in terms of linear matrix inequalities. Furthermore, the sufficient condition for positive real fractional order systems with pseudo state feedback is investigated. Numerical examples are given to illustrate the effectiveness of the method proposed in this paper.

[1]  Robert Shorten,et al.  On the Stability of Switched Positive Linear Systems , 2007, IEEE Transactions on Automatic Control.

[2]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[3]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[4]  Alain Oustaloup,et al.  State variables and transients of fractional order differential systems , 2012, Comput. Math. Appl..

[5]  J. Sabatier,et al.  On Fractional Systems H∞, -Norm Computation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[7]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[8]  Feng Chunbo Strict positive real analysis and design for discrete-time systems with parametric uncertainty , 2005 .

[9]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[10]  A. Oustaloup,et al.  On Fractional Systems H-Norm Computation , 2005 .

[11]  Steven B. Skaar,et al.  Computational results for a feedback control for a rotating viscoelastic beam , 1994 .

[12]  Tadeusz Kaczorek,et al.  Positive linear systems with different fractional orders , 2010 .

[13]  Tadeusz Kaczorek Fractional positive linear systems , 2009, Kybernetes.

[14]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[15]  Alain Oustaloup,et al.  On a representation of fractional order systems: interests for the Initial Condition Problem , 2008 .

[16]  Dirk Aeyels,et al.  Stabilization of positive linear systems , 2001, Syst. Control. Lett..

[17]  L Guo THE POSITIVE REAL CONTROL PROBLEM FOR GENERALIZED LINEAR PLANTS , 1997 .

[18]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[19]  Alain Oustaloup,et al.  On the CRONE Suspension , 2014 .

[20]  F. Tadeo,et al.  Controller Synthesis for Positive Linear Systems With Bounded Controls , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Tadeusz Kaczorek,et al.  Practical stability of positive fractional discrete-time linear systems , 2008 .

[22]  Tadeusz Kaczorek,et al.  Positive Linear Systems Consisting of $n$ Subsystems With Different Fractional Orders , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[24]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[25]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[26]  P. Khargonekar,et al.  Solution to the positive real control problem for linear time-invariant systems , 1994, IEEE Trans. Autom. Control..

[27]  Christophe Farges,et al.  On Observability and Pseudo State Estimation of Fractional Order Systems , 2012, Eur. J. Control.

[28]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[29]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[30]  Christophe Farges,et al.  Fractional systems state space description: some wrong ideas and proposed solutions , 2014 .

[31]  I Podlubny Fractional-order systems and (PID mu)-D-lambda-controllers , 1999 .

[32]  Shu Liang,et al.  Bounded real lemmas for fractional order systems , 2015, Int. J. Autom. Comput..

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .