Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent

We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.

[1]  Jianqiang Sun,et al.  Noise Undressing and Information Identifying of the Financial Correlation Matrix , 2008, 2008 International Symposium on Computer Science and Computational Technology.

[2]  Heidelberg,et al.  A New Method to Estimate the Noise in Financial Correlation Matrices , 2002, cond-mat/0206577.

[3]  Tomaso Aste,et al.  Scaling behaviors in differently developed markets , 2003 .

[4]  Philip Mirowski MANDELBROT’S ECONOMICS AFTER A QUARTER CENTURY , 1995 .

[5]  Bruce J. West,et al.  The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions , 2005, Respiratory Physiology & Neurobiology.

[6]  C. Cristescu,et al.  The dynamics of exchange rate time series and the chaos game , 2009 .

[7]  T. D. Matteo,et al.  Multi-scaling in finance , 2007 .

[8]  Shaun Lovejoy,et al.  Universal multifractal analysis as a tool to characterize multiscale intermittent patterns : example of phytoplankton distribution in turbulent coastal waters , 1999 .

[9]  Eugen I. Scarlat,et al.  Chaotic features in Romanian transition economy as reflected onto the currency exchange rate , 2007 .

[10]  E. Barnes,et al.  Scaling in river corridor widths depicts organization in valley morphology , 2007 .

[11]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[12]  Harry Eugene Stanley,et al.  Econophysics: can physicists contribute to the science of economics? , 1999, Comput. Sci. Eng..

[13]  Daniel Gembris,et al.  Functional Magnetic Resonance Imaging in Real-Time (FIRE) , 2000 .

[14]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[15]  H. Stanley,et al.  Bankruptcy risk model and empirical tests , 2010, Proceedings of the National Academy of Sciences.

[16]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[17]  P. Chu Multi-fractal thermal characteristics of the southwestern GIN sea upper layer , 2003 .

[18]  Rosario N. Mantegna,et al.  Stock market dynamics and turbulence: parallel analysis of fluctuation phenomena , 1997 .

[19]  Eugen I. Scarlat,et al.  Self-similar characteristics of the currency exchange rate in an economy in transition , 2007 .

[20]  James Foster,et al.  GPS Meteorology: Sliding-Window Analysis* , 2005 .

[21]  Gabjin Oh,et al.  Long-term memory and volatility clustering in high-frequency price changes , 2008 .

[22]  Santiago F. Elena,et al.  A Sliding Window-Based Method to Detect Selective Constraints in Protein-Coding Genes and Its Application to RNA Viruses , 2002, Journal of Molecular Evolution.

[23]  Emil Carstea,et al.  OIL SPILLS DETECTION FROM FLUORESCENCE LIDAR MEASUREMENTS , 2010 .

[24]  H. Stanley,et al.  Cross-correlations between volume change and price change , 2009, Proceedings of the National Academy of Sciences.

[25]  Fan,et al.  Joint multifractal measures: Theory and applications to turbulence. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[27]  G. Iori,et al.  Trading strategies in the Italian interbank market , 2006, physics/0611023.

[28]  Shaun Lovejoy,et al.  NOTES AND CORRESPONDENCE Universal Multifractals Do Exist!: Comments on ''A Statistical Analysis of Mesoscale Rainfall as a Random Cascade'' , 1997 .

[29]  Bruce J. West,et al.  Multifractality of cerebral blood flow , 2003 .

[30]  C. Rogers,et al.  Crisis-induced intermittency in non-linear economic cycles , 2007 .

[31]  F. A. Borotto,et al.  An example of intermittency in nonlinear economic cycles , 2006 .

[32]  Janusz A. Holyst,et al.  Correlations in commodity markets , 2008, 0803.3884.

[33]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[34]  F. Schmitt,et al.  Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part I. Theory , 2005 .

[35]  D. Schertzer,et al.  Multifractal Analysis and Simulation of the Global Meteorological Network , 1994 .

[36]  T. L. Rhodes,et al.  Structure function analysis of long-range correlations in plasma turbulence , 2003 .

[37]  Ivo Grosse,et al.  Time-lag cross-correlations in collective phenomena , 2010 .

[38]  Anthony B. Davis,et al.  Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated , 1994 .

[39]  Nikolai Buzikashvili Sliding window technique for the web log analysis , 2007, WWW '07.

[40]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[41]  F. Schmitt,et al.  Multifractal analysis of foreign exchange data , 1999 .

[42]  T. D. Matteo,et al.  Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development , 2004, cond-mat/0403681.

[43]  Resul Eryigit,et al.  Network structure of cross-correlations among the world market indices , 2009 .

[44]  Shaun Lovejoy,et al.  Multifractals, universality classes and satellite and radar measurements of cloud and rain fields , 1990 .

[45]  Sergio Da Silva,et al.  The Chinese chaos game , 2007 .

[46]  James Sullivan,et al.  MPA design using sliding windows: Case study designating a research area , 2008 .

[47]  Rosario N. Mantegna,et al.  Applications of statistical mechanics to nance , 1999 .

[48]  Shaun Lovejoy,et al.  Universal Multifractals: Theory and Observations for Rain and Clouds , 1993 .

[49]  M Ausloos,et al.  Dynamical model and nonextensive statistical mechanics of a market index on large time windows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[51]  Ernst Eberlein,et al.  Term Structure Models Driven by General Lévy Processes , 1999 .

[52]  V. Plerou,et al.  Scaling and universality in economics: empirical results and theoretical interpretation , 2001 .

[53]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[55]  V. Plerou,et al.  Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series , 1999, cond-mat/9902283.

[56]  H. Stanley,et al.  Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. , 2007, Physical review letters.

[57]  F. Schmitt,et al.  MULTIFRACTAL FLUCTUATIONS IN FINANCE , 2000, cond-mat/0102369.

[58]  Thomas Guhr,et al.  Local normalization: Uncovering correlations in non-stationary financial time series , 2010 .

[59]  L. Seuront,et al.  Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea , 2001 .

[60]  P. Hubert,et al.  Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions , 1996 .

[61]  F. J. Anscombe,et al.  Graphs in Statistical Analysis , 1973 .

[62]  L. Amaral,et al.  Can statistical physics contribute to the science of economics , 1996 .

[63]  S Posse,et al.  Functional magnetic resonance imaging in real time (FIRE): Sliding‐window correlation analysis and reference‐vector optimization , 2000, Magnetic resonance in medicine.

[64]  Hua-Fu Li,et al.  A sliding window method for finding top-k path traversal patterns over streaming Web click-sequences , 2009, Expert Syst. Appl..

[65]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  A. Carbone,et al.  Cross-correlation of long-range correlated series , 2008, 0804.2064.

[67]  Suh-Yin Lee,et al.  Mining frequent itemsets over data streams using efficient window sliding techniques , 2009, Expert Syst. Appl..

[68]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .