Neutral Helium Microscopy (SHeM): A Review

Neutral helium atom microscopy, also referred to as scanning helium microscopy and commonly abbreviated SHeM or NAM (neutral atom microscopy), is a novel imaging technique that uses a beam of neutral helium atoms as an imaging probe. The technique offers a number of advantages such as the very low energy of the incident probing atoms (less than 0.1 eV), unsurpassed surface sensitivity (no penetration into the sample bulk), a charge neutral, inert probe and a high depth of field. This opens up for a range of interesting applications such as: imaging of fragile and/or non-conducting samples without damage, inspection of 2D materials and nano-coatings, with the possibility to test properties such as grain boundaries or roughness on the Angstr\"om scale (the wavelength of the incident helium atoms) and imaging of samples with high aspect ratios, with the potential to obtain true to scale height information of 3D surface topography with nanometer resolution: nano stereo microscopy. However, for a full exploitation of the technique, a range of experimental and theoretical issues still needs to be resolved. In this paper we review the research in the field. We do this by following the trajectory of the helium atoms step by step through the microscope: from the initial acceleration in the supersonic expansion used to generate the probing beam over the atom optical elements used to shape the beam, followed by interaction of the helium atoms with the sample (contrast properties) to the final detection and post-processing. We also review recent advances in scanning helium microscope design including a discussion of imaging with other atoms and molecules than helium.

[1]  R. Doak Focusing of an Atomic Beam , 2022, 2201.06201.

[2]  W. Belcher,et al.  Standardizing resolution definition in scanning helium microscopy. , 2021, Ultramicroscopy.

[3]  A. Jardine,et al.  Low-energy electron ionization mass spectrometer for efficient detection of low mass species. , 2021, The Review of scientific instruments.

[4]  A. Jardine,et al.  True-to-size surface mapping with neutral helium atoms , 2021 .

[5]  S. Sibener,et al.  Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials. , 2021, Physical chemistry chemical physics : PCCP.

[6]  S. Przyborski,et al.  Multiple scattering in scanning helium microscopy , 2020 .

[7]  A. Jardine,et al.  Observation of diffraction contrast in scanning helium microscopy , 2020, Scientific Reports.

[8]  P. Dastoor,et al.  Fast neutral atom microscopy: An optimisation framework for stagnation detectors , 2020 .

[9]  A. Jardine,et al.  A method for constrained optimisation of the design of a scanning helium microscope. , 2019, Ultramicroscopy.

[10]  M. Bergin Instrumentation and contrast mechanisms in scanning helium microscopy , 2019 .

[11]  Thomas A Myles,et al.  Taxonomy through the lens of neutral helium microscopy , 2019, Scientific Reports.

[12]  G. Benedek,et al.  Atomic Scale Dynamics at Surfaces: Theory and Experimental Studies with Helium Atom Scattering , 2018 .

[13]  A. Jardine,et al.  An evaluation of the kinematic approximation in helium atom scattering using wavepacket calculations , 2018, Surface Science.

[14]  G. Bracco,et al.  Velocity distributions in microskimmer supersonic expansion helium beams: High precision measurements and modeling. , 2018, The Review of scientific instruments.

[15]  A. Jardine,et al.  A ray tracing method for predicting contrast in neutral atom beam imaging. , 2018, Micron.

[16]  P. Dastoor,et al.  Image formation in the scanning helium microscope. , 2018, Ultramicroscopy.

[17]  G. Bracco,et al.  Center-line intensity of a supersonic helium beam , 2018, Physical Review A.

[18]  T. Reisinger,et al.  Fast resolution change in neutral helium atom microscopy. , 2018, The Review of scientific instruments.

[19]  C. Weingarten,et al.  Ultrasmooth metal thin films on curved fused silica by laser polishing , 2017 .

[20]  G. Anemone Development of Graphene Atomic Mirrors for Neutral Helium Microscopy , 2017 .

[21]  K. Berggren,et al.  Atom sieve for nanometer resolution neutral helium microscopy , 2017 .

[22]  B. Holst,et al.  Flexible thin metal crystals as focusing mirrors for neutral atomic beams , 2017 .

[23]  E. Knudsen,et al.  Zero-order filter for diffractive focusing of de Broglie matter waves , 2017 .

[24]  G. Bracco,et al.  Theoretical model of the helium zone plate microscope , 2017 .

[25]  G. Bracco,et al.  Theoretical model of the helium pinhole microscope , 2016 .

[26]  W. Ernst,et al.  Adhesion properties of hydrogen on Sb(111) probed by helium atom scattering , 2016, 1705.08704.

[27]  T. Kaltenbacher Optimization of a constrained linear monochromator design for neutral atom beams. , 2016, Ultramicroscopy.

[28]  P. Dastoor,et al.  Unlocking new contrast in a scanning helium microscope , 2016, Nature Communications.

[29]  T. Mckechnie,et al.  General Theory of Light Propagation and Imaging Through the Atmosphere , 2015, Progress in Optical Science and Photonics.

[30]  L. Kipp,et al.  Focusing of a neutral helium beam with a photon-sieve structure , 2015 .

[31]  P. Dastoor,et al.  A highly contrasting scanning helium microscope. , 2015, The Review of scientific instruments.

[32]  D. Maclaren,et al.  A design for a pinhole scanning helium microscope , 2014 .

[33]  E. Sánchez,et al.  Exploring neutral atom microscopy , 2014 .

[34]  T. Kaltenbacher,et al.  Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K. , 2014, The journal of physical chemistry. A.

[35]  J. Stamnes,et al.  The Beynon Gabor zone plate: a new tool for de Broglie matter waves and hard X-rays? An off axis and focus intensity investigation. , 2013, Optics express.

[36]  E. Sánchez,et al.  Increased resolution in neutral atom microscopy , 2012, Journal of microscopy.

[37]  G. Bracco,et al.  Brightness and virtual source size of a supersonic deuterium beam , 2012 .

[38]  K. O'Donnell,et al.  A desktop supersonic free-jet beam source for a scanning helium microscope (SHeM) , 2012 .

[39]  G. Bracco,et al.  Focusing of a neutral helium beam below one micron , 2012 .

[40]  G. Bracco,et al.  Influence of Steps on the Tilting and Adsorption Dynamics of Ordered Pentacene Films on Vicinal Ag(111) Surfaces , 2012, 1203.5937.

[41]  K. O'Donnell,et al.  Field ionization detection of helium using a planar array of carbon nanotubes , 2012 .

[42]  R. Miranda,et al.  A high-reflectivity, ambient-stable graphene mirror for neutral atomic and molecular beams , 2011 .

[43]  E. Sánchez,et al.  A simple approach to neutral atom microscopy. , 2011, The Review of scientific instruments.

[44]  Thomas Reisinger,et al.  Free-standing, axially-symmetric diffraction gratings for neutral matter-waves: experiments and fabrication , 2011 .

[45]  Alan G. Michette,et al.  Optical Systems for Soft X Rays , 2011, Springer US.

[46]  E. Sánchez,et al.  Simplified neutral atom microscopy , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[47]  A. E. Ross,et al.  Finite element analysis of adaptive atom-optical mirrors , 2011 .

[48]  U. Even,et al.  Generation and propagation of intense supersonic beams. , 2011, The journal of physical chemistry. A.

[49]  E. Sutter,et al.  Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces , 2010 .

[50]  W. Schöllkopf,et al.  Coherent reflection of he atom beams from rough surfaces at grazing incidence. , 2010, Physical review letters.

[51]  Henry I. Smith,et al.  Free-standing silicon-nitride zoneplates for neutral-helium microscopy , 2010 .

[52]  B. Surma,et al.  An ellipsoidal mirror for focusing neutral atomic and molecular beams , 2010 .

[53]  D. J. Douglas Linear quadrupoles in mass spectrometry. , 2009, Mass spectrometry reviews.

[54]  W. Schöllkopf,et al.  Focusing a helium atom beam using a quantum-reflection mirror , 2009 .

[55]  D. Joy,et al.  Choosing a Beam-Electrons,Protons, He or Ga ions? , 2009, Microscopy and Microanalysis.

[56]  D. DePonte,et al.  Current-voltage relation for a field ionizing He beam detector , 2009 .

[57]  J. Galas,et al.  Chromatic sensor-based- profilometer for the focusing mirror in the Scanning Helium Microscope , 2008, Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics.

[58]  T. Reisinger,et al.  Neutral atom and molecule focusing using a Fresnel zone plate , 2008 .

[59]  J. J. Hinarejos,et al.  A Quantum‐Stabilized Mirror for Atoms , 2008 .

[60]  Dariusz Litwin,et al.  An optical profilometer for characterizing complex surfaces under high vacuum conditions , 2008 .

[61]  W. Ernst,et al.  Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization , 2008 .

[62]  M. Koch,et al.  Imaging with neutral atoms—a new matter‐wave microscope , 2008, Journal of microscopy.

[63]  S. Rehbein,et al.  Direct images of the virtual source in a supersonic expansion. , 2007, The journal of physical chemistry. A.

[64]  William Allison,et al.  Accurate surface profilometry of ultrathin wafers , 2007 .

[65]  J. Galas,et al.  Symmetry descriptors for Si wafer characterisation for scanning helium atomic beam microscopy mirror , 2007, SPIE Optics + Optoelectronics.

[66]  A. Miros,et al.  Temperature influence in confocal techniques for a silicon wafer testing , 2007, SPIE Optics + Optoelectronics.

[67]  J. Galas,et al.  X-ray studies of ultra-thin si wafers for mirror application , 2006 .

[68]  A. Kalinin,et al.  Ion source with longitudinal ionization of a molecular beam by an electron beam in a magnetic field , 2006 .

[69]  D. DePonte,et al.  Brightness of micronozzle helium source , 2006 .

[70]  A. Jardine,et al.  Anomalous attenuation at low temperatures in high-intensity helium beam sources , 2005 .

[71]  J. Galas,et al.  Measurements of the geometrical characteristics of the silicon wafer for helium microscope focusing mirror , 2005, SPIE Optics + Optoelectronics.

[72]  R. Doak The assessment of field ionization detectors for molecular beam use , 2004 .

[73]  Gregory S. Yablonsky,et al.  Knudsen's cosine law and random billiards , 2004 .

[74]  R. Doak,et al.  Field ionization detection of supersonic molecular beams , 2004 .

[75]  William I. Milne,et al.  Helium Detection via Field Ionization from Carbon Nanotubes , 2003 .

[76]  William Allison,et al.  Phase-stepping optical profilometry of atom mirrors , 2003 .

[77]  G. Bracco,et al.  Study of He flow properties to test He dimer potentials , 2003 .

[78]  M. Hillenkamp,et al.  Condensation limited cooling in supersonic expansions , 2003 .

[79]  S. Rehbein Nanofabrication of diffractive optics for soft X-ray and atom beam focusing , 2003 .

[80]  John Greenwood,et al.  The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems , 2002 .

[81]  D. Maclaren Development of a single crystal mirror for scanning helium microscopy. , 2002 .

[82]  Christopher Herbert,et al.  Mass Spectrometry Basics , 2002 .

[83]  D. Maclaren,et al.  Simple design for the transportation of ex situ prepared hydrogen passivated silicon , 2002 .

[84]  R. L. Johnson,et al.  Sharper images by focusing soft X-rays with photon sieves , 2001, Nature.

[85]  D. Maclaren,et al.  An AFM study of the processing of hydrogen passivated silicon(1 1 1) of a low miscut angle , 2001 .

[86]  M. Ivanov,et al.  A Comparative Analysis of 2D/3D Micronozzle Flows by the DSMC Method , 2001 .

[87]  M. Moldover,et al.  Ab Initio Values of the Thermophysical Properties of Helium as Standards , 2000, Journal of research of the National Institute of Standards and Technology.

[88]  William Allison,et al.  Single crystal optic elements for helium atom microscopy , 2000 .

[89]  C. Schmidt,et al.  Design and performance of a highly efficient mass spectrometer for molecular beams , 2000 .

[90]  J. Knowling Helium atom scattering: experiment and the interpretation of experiment. , 2000 .

[91]  J. R. Buckland,et al.  Determination of the helium/Si(111)–(1×1)H potential , 2000 .

[92]  G. Schmahl,et al.  TOWARDS REALIZATION OF AN ATOMIC DE BROGLIE MICROSCOPE : HELIUM ATOM FOCUSING USING FRESNEL ZONE PLATES , 1999 .

[93]  J. M. Huntley,et al.  Mechanical properties of ultra-thin single crystals for atom-mirror applications: Au(001), Si(001) , 1999 .

[94]  William Allison,et al.  Optical properties of mirrors for focusing of non-normal incidence atom beams , 1999 .

[95]  J. R. Buckland,et al.  Spatial mapping in the electron-impact ion-source of a residual gas analyser , 1999 .

[96]  J. R. Buckland,et al.  Helium reflectivity of the Si(111)-(1×1) H surface for use in atom optical elements , 1999 .

[97]  G. Bracco,et al.  Theoretical and experimental study of He free-jet expansions , 1999 .

[98]  William Allison,et al.  An atom-focusing mirror , 1997, Nature.

[99]  R. Doak,et al.  Growth of AlN and GaN on 6H–SiC(0001) using a helium supersonic beam seeded with ammonia , 1997 .

[100]  E. Neher,et al.  Micrometer-sized nozzles and skimmers for the production of supersonic He atom beams , 1997 .

[101]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[102]  Tang,et al.  Accurate analytical He-He van der Waals potential based on perturbation theory. , 1995, Physical review letters.

[103]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[104]  Takuma,et al.  Imaging and focusing of atoms by a fresnel zone plate. , 1991, Physical review letters.

[105]  K. Nanbu Variable Hard-Sphere Model for Gas Mixture , 1990 .

[106]  J. Toennies,et al.  Observation of interference oscillations in helium scattering from single surface defects. , 1986, Physical review letters.

[107]  D. Hunten,et al.  Neutral gas measurements of comet Halley from Vega 1 , 1986 .

[108]  B. Poelsema,et al.  Lateral distribution of ion bombardment induced defects on Pt(111) at 80 K , 1985 .

[109]  C. Rhodes Multiphoton Ionization of Atoms , 1985, Science.

[110]  W. Newell,et al.  Multiphoton lonization of Atoms , 1985 .

[111]  M. Verheijen,et al.  A quantitative description of skimmer interaction in supersonic secondary beams: Calibration of absolute intensities , 1984 .

[112]  B. Poelsema,et al.  Direct Evidence for Two-Dimensional Xe Gas-Solid Phase Transition on Pt(111) by Means of Thermal He Scattering , 1983 .

[113]  N. F. Verster,et al.  Absolute intensities and perpendicular temperatures of supersonic beams of polyatomic gases , 1981 .

[114]  R. Doak,et al.  Measurement of the Dispersion Relation for Rayleigh Surface Phonons of LiF(001) by Inelastic Scattering of He Atoms , 1981 .

[115]  J. Jortner,et al.  Cooling of large and heavy molecules in seeded supersonic beams , 1980 .

[116]  K. Rieder,et al.  ATOMIC BEAM DIFFRACTION FROM SOLID SURFACES , 1980 .

[117]  J. Toennies,et al.  Theoretical studies of highly expanded free jets: Influence of quantum effects and a realistic intermolecular potential , 1977 .

[118]  G. Bird Transition regime behavior of supersonic beam skimmers , 1976 .

[119]  H. H. Tuithof,et al.  Simultaneous detection of a mass spectrum using a channeltron electron multiplier array , 1975 .

[120]  Graeme A. Bird,et al.  Direct Simulation and the Boltzmann Equation , 1970 .

[121]  J. Los,et al.  An absolute bolometer detector for energetic neutral particles , 1970 .

[122]  R. E. Grundy Axially Symmetric Expansion of a Monatomic Gas from an Orifice into a Vacuum , 1969 .

[123]  Bernard B. Hamel,et al.  Kinetic Theory of Source Flow Expansion with Application to the Free Jet , 1966 .

[124]  Jerry Grey,et al.  A High Intensity Source for the Molecular Beam. Part I. Theoretical , 1951 .

[125]  W. Slichter a High-Intensity Source for the Molecular Beam. , 1951 .

[126]  Janet E. Jones On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature , 1924 .

[127]  I. G. Priest THE OPTICAL SOCIETY OF AMERICA. , 1922, Science.

[128]  R. Sharma,et al.  Imaging atomically thin films using neutral atom microscopy , 2021 .

[129]  A. Fahy A practical consideration of scanning helium microscopy , 2019 .

[130]  Matthew Gordon Barr,et al.  Imaging with atoms: aspects of scanning helium microscopy , 2016 .

[131]  P. Witham Pinhole neutral atom microscopy , 2013 .

[132]  G. Bracco,et al.  Probing Surfaces with Thermal He Atoms: Scattering and Microscopy with a Soft Touch , 2013 .

[133]  Kane O'Donnell,et al.  Field ionization detection for atom microscopy , 2010 .

[134]  D. Maclaren,et al.  Microscopy with atomic beams: contrast in a scanning helium microscope , 2004 .

[135]  R. Campargue Atomic and Molecular Beams , 2001 .

[136]  W Allison,et al.  Mechanical properties of ultra-thin single crystals for atom-mirror applications: Au(001), Si(001) , 1999 .

[137]  G. Bird Recent advances and current challenges for DSMC , 1998 .

[138]  R. Doak Experimental Limitations and Opportunities in Single-Phonon Inelastic Helium Scattering , 1992 .

[139]  E. Hulpke Helium atom scattering from surfaces , 1992 .

[140]  R. Doak Focusing of a helium atom beam , 1990, Optical Society of America Annual Meeting.

[141]  B. Poelsema,et al.  The scattering mechanism , 1989 .

[142]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[143]  Miklos N. Szilagyi,et al.  Electron and ion optics , 1988 .

[144]  A. Habets,et al.  Supersonic expansion of argon into vacuum , 1977 .

[145]  U. Bossel Skimming of molecular beams from diverging non-equilibrium gas jets , 1974 .

[146]  D. R. O'keefe,et al.  Atomic and molecular beam scattering from macroscopically rough surfaces , 1971 .

[147]  E. Wenaas Equilibrium Cosine Law and Scattering Symmetry at the Gas–Surface Interface , 1971 .

[148]  O. Stern,et al.  Beugung von Molekularstrahlen , 1930 .