Detecting Malicious PDF Documents Using Semi-Supervised Machine Learning

[1]  Jörg Schwenk,et al.  Practical Decryption exFiltration: Breaking PDF Encryption , 2019, CCS.

[2]  Jianguo Jiang,et al.  Malicious documents detection for business process management based on multi-layer abstract model , 2019, Future Gener. Comput. Syst..

[3]  Fei Wang,et al.  Malicious Word Document Detection Based on Multi-View Features Learning , 2019, 2019 28th International Conference on Computer Communication and Networks (ICCCN).

[4]  Liang Liu,et al.  Capturing the symptoms of malicious code in electronic documents by file's entropy signal combined with Machine learning , 2019, Appl. Soft Comput..

[5]  Jason Zhang,et al.  MLPdf: An Effective Machine Learning Based Approach for PDF Malware Detection , 2018, ArXiv.

[6]  Daniel Gibert,et al.  Classification of Malware by Using Structural Entropy on Convolutional Neural Networks , 2018, AAAI.

[7]  P. Laskov,et al.  Hidost: a static machine-learning-based detector of malicious files , 2016, EURASIP J. Inf. Secur..

[8]  Lior Rokach,et al.  SFEM: Structural feature extraction methodology for the detection of malicious office documents using machine learning methods , 2016, Expert Syst. Appl..

[9]  Gerardo Canfora,et al.  An HMM and structural entropy based detector for Android malware: An empirical study , 2016, Comput. Secur..

[10]  Giorgio Giacinto,et al.  A structural and content-based approach for a precise and robust detection of malicious PDF files , 2015, 2015 International Conference on Information Systems Security and Privacy (ICISSP).

[11]  Jamshid Bagherzadeh,et al.  An Evaluation of Two-Step Techniques for Positive-Unlabeled Learning in Text Classification , 2014 .

[12]  Hsing-Kuo Kenneth Pao,et al.  Multi-view Malicious Document Detection , 2013, 2013 Conference on Technologies and Applications of Artificial Intelligence.

[13]  Angelos Stavrou,et al.  Malicious PDF detection using metadata and structural features , 2012, ACSAC '12.

[14]  Giorgio Giacinto,et al.  A Pattern Recognition System for Malicious PDF Files Detection , 2012, MLDM.

[15]  Evangelos P. Markatos,et al.  Combining static and dynamic analysis for the detection of malicious documents , 2011, EUROSEC '11.

[16]  Jean-Philippe Vert,et al.  A bagging SVM to learn from positive and unlabeled examples , 2010, Pattern Recognit. Lett..

[17]  José Torres,et al.  Malicious PDF Documents Detection using Machine Learning Techniques - A Practical Approach with Cloud Computing Applications , 2018, ICISSP.

[18]  Meng Xu,et al.  PlatPal: Detecting Malicious Documents with Platform Diversity , 2017, USENIX Security Symposium.

[19]  Chao Liu,et al.  FEPDF: A Robust Feature Extractor for Malicious PDF Detection , 2017, 2017 IEEE Trustcom/BigDataSE/ICESS.

[20]  Yanjun Qi,et al.  Automatically Evading Classifiers: A Case Study on PDF Malware Classifiers , 2016, NDSS.

[21]  Pavel Laskov,et al.  Detection of Malicious PDF Files Based on Hierarchical Document Structure , 2013, NDSS.