Tensor methods for the computation of MTTA in large systems of loosely interconnected components

We are concerned with the computation of the mean-time-to-absorption (MTTA) for a large system of loosely interconnected components, modeled as continuous time Markov chains. In particular, we show that splitting the local and synchronization transitions of the smaller subsystems allows to formulate an algorithm for the computation of the MTTA which is proven to be linearly convergent. Then, we show how to modify the method to make it quadratically convergent, thus overcoming the difficulties for problems with convergent rate close to $1$. In addition, it is shown that this decoupling of local and synchronization transitions allows to easily represent all the matrices and vectors involved in the method in the tensor-train (TT) format - and we provide numerical evidence showing that this allows to treat large problems with up to billions of states - which would otherwise be unfeasible.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Ivan V. Oseledets,et al.  Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..

[3]  Andrea Bobbio,et al.  Reliability and Availability Engineering - Modeling, Analysis, and Applications , 2017 .

[4]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[5]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[6]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[7]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[8]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[9]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[10]  Silvano Chiaradonna,et al.  Stochastic Evaluation of Large Interdependent Composed Models Through Kronecker Algebra and Exponential Sums , 2019, Petri Nets.

[11]  M. Crouzeix,et al.  The numerical range as a spectral set , 2017, 1702.00668.

[12]  Susanna Donatelli,et al.  Superposed Stochastic Automata: A Class of Stochastic Petri Nets with Parallel Solution and Distributed State Space , 1993, Perform. Evaluation.

[13]  Gianfranco Ciardo,et al.  A data structure for the efficient Kronecker solution of GSPNs , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[14]  N. Higham Functions Of Matrices , 2008 .

[15]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[16]  Daniel Kressner,et al.  Multigrid methods combined with low-rank approximation for tensor structured Markov chains , 2016 .

[17]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[18]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[19]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[20]  Wolfgang Hackbusch,et al.  Computation of best $$L^{\infty }$$L∞ exponential sums for 1 / x by Remez’ algorithm , 2019, Comput. Vis. Sci..

[21]  Brigitte Plateau,et al.  Stochastic Automata Networks , 2021, Introduction to the Numerical Solution of Markov Chains.

[22]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[23]  S. V. DOLGOV,et al.  Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..

[24]  Daniel Kressner,et al.  Low-Rank Tensor Methods for Communicating Markov Processes , 2014, QEST.

[25]  Peter Buchholz,et al.  Kronecker Based Matrix Representations for Large Markov Models , 2004, Validation of Stochastic Systems.

[26]  Peter Buchholz,et al.  On compact solution vectors in Kronecker-based Markovian analysis , 2017, Perform. Evaluation.

[27]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[28]  Leonardo Robol,et al.  Computing performability measures in Markov chains by means of matrix functions , 2020, J. Comput. Appl. Math..

[29]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .