Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat

If rodents do not display the behavioral complexity that is subserved in primates by prefrontal cortex, then evolution of prefrontal cortex in the rat should be doubted. Primate prefrontal cortex has been shown to mediate shifts in attention between perceptual dimensions of complex stimuli. This study examined the possibility that medial frontal cortex of the rat is involved in the shifting of perceptual attentional set. We trained rats to perform an attentional set-shifting task that is formally the same as a task used in monkeys and humans. Rats were trained to dig in bowls for a food reward. The bowls were presented in pairs, only one of which was baited. The rat had to select the bowl in which to dig by its odor, the medium that filled the bowl, or the texture that covered its surface. In a single session, rats performed a series of discriminations, including reversals, an intradimensional shift, and an extradimensional shift. Bilateral lesions by injection of ibotenic acid in medial frontal cortex resulted in impairment in neither initial acquisition nor reversal learning. We report here the same selective impairment in shifting of attentional set in the rat as seen in primates with lesions of prefrontal cortex. We conclude that medial frontal cortex of the rat has functional similarity to primate lateral prefrontal cortex.

[1]  B. Shepp,et al.  INTRADIMENSIONAL AND EXTRADIMENSIONAL SHIFTS IN THE RAT. , 1964, Journal of comparative and physiological psychology.

[2]  N. Mackintosh SELECTIVE ATTENTION IN ANIMAL DISCRIMINATION LEARNING. , 1965, Psychological bulletin.

[3]  N. J. Slamecka A methodological analysis of shift paradigms in human discrimination learning. , 1968, Psychological bulletin.

[4]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[5]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[6]  T. Robbins,et al.  Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man , 1991, Neuropsychologia.

[7]  T. Robbins,et al.  Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. , 1993, Brain : a journal of neurology.

[8]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[9]  A C Roberts,et al.  Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. , 1996, Behavioral neuroscience.

[10]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[11]  T. Robbins,et al.  Dissociable Forms of Inhibitory Control within Prefrontal Cortex with an Analog of the Wisconsin Card Sort Test: Restriction to Novel Situations and Independence from “On-Line” Processing , 1997, The Journal of Neuroscience.

[12]  T. Bussey,et al.  Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. , 1997, Behavioral neuroscience.

[13]  Daphna Joel,et al.  Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia , 1997, Behavioural Brain Research.

[14]  J. Aggleton,et al.  Neurotoxic Lesions of the Dorsomedial Thalamus Impair the Acquisition But Not the Performance of Delayed Matching to Place by Rats: a Deficit in Shifting Response Rules , 1998, The Journal of Neuroscience.

[15]  P. Gisquet-Verrier,et al.  Lesions of the prelimbic-infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: evidence for a role in working memory? , 1999, Behavioral neuroscience.

[16]  R. Kesner,et al.  Involvement of the Prelimbic–Infralimbic Areas of the Rodent Prefrontal Cortex in Behavioral Flexibility for Place and Response Learning , 1999, The Journal of Neuroscience.

[17]  V. Brown,et al.  Mechanisms underlying attentional set-shifting inParkinsons disease , 1999, Neuropsychologia.

[18]  R P Kesner,et al.  Involvement of rodent prefrontal cortex subregions in strategy switching. , 1999, Behavioral neuroscience.

[19]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.