Revisiting Deutsch-Jozsa algorithm

Abstract The Deutsch-Jozsa algorithm is essentially faster than any possible deterministic classical algorithm for solving a promise problem that is in fact a symmetric partial Boolean function, named as the Deutsch-Jozsa problem. The Deutsch-Jozsa problem can be equivalently described as a partial function D J n 0 : { 0 , 1 } n → { 0 , 1 } defined as: D J n 0 ( x ) = 1 for | x | = n / 2 , D J n 0 ( x ) = 0 for | x | = 0 , n , and it is undefined for the remaining cases, where n is even, and | x | is the Hamming weight of x. The Deutsch-Jozsa algorithm needs only one query to compute D J n 0 but the classical deterministic algorithm requires n 2 + 1 queries to compute it in the worse case. We present all symmetric partial Boolean functions with degree 1 and 2; We prove the exact quantum query complexity of all symmetric partial Boolean functions with degree 1 and 2. We prove Deutsch-Jozsa algorithm can compute any symmetric partial Boolean function f with exact quantum 1-query complexity.

[1]  Shenggen Zheng,et al.  Generalizations of the distributed Deutsch–Jozsa promise problem , 2014, Mathematical Structures in Computer Science.

[2]  Daowen Qiu,et al.  Optimal Separation in Exact Query Complexities for Simon's Problem , 2016, J. Comput. Syst. Sci..

[3]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  Andris Ambainis,et al.  Separations in query complexity based on pointer functions , 2015, STOC.

[5]  Yuichi Yoshida,et al.  Partially Symmetric Functions Are Efficiently Isomorphism Testable , 2015, SIAM J. Comput..

[6]  Andris Ambainis,et al.  Superlinear advantage for exact quantum algorithms , 2012, STOC '13.

[7]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Andrew Forbes,et al.  Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm , 2016 .

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[10]  Dong Pyo Chi,et al.  Quantum Algorithm for Generalized Deutsch-Jozsa Problem , 2008 .

[11]  K. Kim,et al.  Deutsch-Jozsa algorithm as a test of quantum computation , 1998, quant-ph/9807012.

[12]  Andris Ambainis,et al.  Exact quantum query complexity of EXACT and THRESHOLD , 2013, TQC.

[13]  Rusins Freivalds,et al.  Quantum Queries on Permutations , 2015, DCFS.

[14]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[15]  Alina Dubrovska Vasilieva,et al.  Computing Boolean Functions: Exact Quantum Query Algorithms and Low Degree Polynomials , 2006 .

[16]  Shao Chin Sung,et al.  Deterministic polynomial-time quantum algorithms for Simon’s problem , 2004, computational complexity.

[17]  Shenggen Zheng,et al.  From Quantum Query Complexity to State Complexity , 2014, Computing with New Resources.

[18]  Anne Canteaut,et al.  Symmetric Boolean functions , 2005, IEEE Transactions on Information Theory.

[19]  Yacov Yacobi,et al.  The Complexity of Promise Problems with Applications to Public-Key Cryptography , 1984, Inf. Control..

[20]  Andris Ambainis,et al.  Exact quantum algorithms have advantage for almost all Boolean functions , 2014, Quantum Inf. Comput..

[21]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[22]  Thomas P. Hayes,et al.  The Quantum Black-Box Complexity of Majority , 2002, Algorithmica.

[23]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[24]  Ashley Montanaro,et al.  On Exact Quantum Query Complexity , 2011, Algorithmica.

[25]  Debajyoti Bera A different Deutsch–Jozsa , 2015, Quantum Inf. Process..

[26]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[27]  Gatis Midrijanis Exact quantum query complexity for total Boolean functions , 2004, quant-ph/0403168.

[28]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[29]  Shenggen Zheng,et al.  Generalized Deutsch-Jozsa problem and the optimal quantum algorithm , 2018, Physical Review A.

[30]  Andris Ambainis,et al.  Polynomials, Quantum Query Complexity, and Grothendieck's Inequality , 2015, CCC.