Approximations for Viscosity Solutions of Hamilton-Jacobi Equations With Locally Varying Time and Space Grids

A new monotone finite difference scheme is introduced that approximates viscosity solutions of first-order nonlinear Hamilton--Jacobi equations. The main feature of the scheme is that it allows for locally varying time and space grids, making it ideal for use with adaptive algorithms. Explicit a priori error estimates are given to establish convergence. Numerical examples, including adaptive mesh refinement examples, demonstrate the effectiveness of the proposed scheme.

[1]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[2]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[3]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[4]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[5]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[6]  Panagiotis E. Souganidis,et al.  Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.

[7]  Jianliang Qian,et al.  Adaptive Finite Difference Method For Traveltime And Amplitude , 1999 .

[8]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[9]  S. Osher,et al.  Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .

[10]  Bernardo Cockburn,et al.  A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids , 1997, Math. Comput..

[11]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[12]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[13]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[14]  Stanley Osher,et al.  Level Set Methods , 2003 .

[15]  Bernardo Cockburn,et al.  A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids , 1998 .

[16]  Bernardo Cockburn,et al.  A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case , 2001, Math. Comput..

[17]  J. Sethian,et al.  An O(N log N) algorithm for shape modeling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[19]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[20]  Stanly Steinberg,et al.  Flux-corrected transport in a moving grid , 1994 .

[21]  Bernardo Cockburn,et al.  A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach , 1996, Math. Comput..

[22]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[23]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[24]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[25]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[26]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[27]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[28]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[29]  Steve Bryson,et al.  High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..

[30]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[31]  Laurent Gosse,et al.  Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..

[32]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[33]  Bernardo Cockburn,et al.  An adaptive method with rigorous error control for the Hamilton--Jacobi equations. Part I: The one-dimensional steady state case , 2005 .

[34]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[35]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[36]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[37]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..