Approximations for Viscosity Solutions of Hamilton-Jacobi Equations With Locally Varying Time and Space Grids
暂无分享,去创建一个
[1] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[2] L. Petzold,et al. Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .
[3] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[4] Chi-Tien Lin,et al. High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[5] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[6] Panagiotis E. Souganidis,et al. Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.
[7] Jianliang Qian,et al. Adaptive Finite Difference Method For Traveltime And Amplitude , 1999 .
[8] E. Rouy,et al. A viscosity solutions approach to shape-from-shading , 1992 .
[9] S. Osher,et al. Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .
[10] Bernardo Cockburn,et al. A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids , 1997, Math. Comput..
[11] Chi-Wang Shu,et al. High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..
[12] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[13] R. Abgrall. Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .
[14] Stanley Osher,et al. Level Set Methods , 2003 .
[15] Bernardo Cockburn,et al. A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids , 1998 .
[16] Bernardo Cockburn,et al. A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case , 2001, Math. Comput..
[17] J. Sethian,et al. An O(N log N) algorithm for shape modeling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[18] Thomas Y. Hou,et al. An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .
[19] Yunqing Huang,et al. Moving mesh methods with locally varying time steps , 2004 .
[20] Stanly Steinberg,et al. Flux-corrected transport in a moving grid , 1994 .
[21] Bernardo Cockburn,et al. A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach , 1996, Math. Comput..
[22] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[23] P. Lions,et al. Two approximations of solutions of Hamilton-Jacobi equations , 1984 .
[24] P. Lions,et al. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .
[25] Eitan Tadmor,et al. New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .
[26] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[27] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[28] Pingwen Zhang,et al. An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .
[29] Steve Bryson,et al. High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..
[30] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[31] Laurent Gosse,et al. Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..
[32] Thomas C. Cecil,et al. Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .
[33] Bernardo Cockburn,et al. An adaptive method with rigorous error control for the Hamilton--Jacobi equations. Part I: The one-dimensional steady state case , 2005 .
[34] Marizio Falcone,et al. Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .
[35] Weiqing Ren,et al. An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .
[36] S. Osher,et al. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .
[37] Hongkai Zhao,et al. A fast sweeping method for Eikonal equations , 2004, Math. Comput..