On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation

A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.

[1]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[2]  L. P. Kubin,et al.  The modelling of dislocation patterns , 1992 .

[3]  A. Acharya,et al.  Finite element approximation of field dislocation mechanics , 2005 .

[4]  N. M. Ghoniem *,et al.  Dislocation motion in anisotropic multilayer materials , 2005 .

[5]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[6]  N. Ghoniem,et al.  Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.

[7]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[8]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[9]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[10]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[11]  J. Chaboche,et al.  Dislocations and elastic anisotropy in heteroepitaxial metallic thin films , 2003 .

[12]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[13]  X. Han,et al.  Stress field and interaction forces of dislocations in anisotropic multilayer thin films , 2005 .

[14]  C. Denoual Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods , 2004 .

[15]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[16]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .

[17]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[18]  Amit Acharya,et al.  A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .

[19]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[20]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[21]  Hussein M. Zbib,et al.  Modeling of deformation by a 3D simulation of multiple, curved dislocations , 1996 .

[22]  Peter Gumbsch,et al.  Dislocation sources and the flow stress of polycrystalline thin metal films , 2003 .

[23]  Marc Fivel,et al.  Implementing image stresses in a 3D dislocation simulation , 1996 .

[24]  L. B. Freund,et al.  A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path , 1990 .

[25]  J. Tersoff,et al.  Interaction of threading and misfit dislocations in a strained epitaxial layer , 1996 .

[26]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[27]  Huajian Gao,et al.  Discrete dislocation dynamics simulations of surface induced size effects in plasticity , 2006 .

[28]  John Dundurs,et al.  Behavior of an Edge Dislocation near a Bimetallic Interface , 1965 .

[29]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[31]  Vito Volterra,et al.  Sur l'équilibre des corps élastiques multiplement connexes , 1907 .

[32]  C. Denoual Modeling dislocation by coupling Peierls–Nabarro and element-free Galerkin methods , 2007 .

[33]  Ted Belytschko,et al.  On XFEM applications to dislocations and interfaces , 2007 .

[34]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[35]  Ted Belytschko,et al.  A new fast finite element method for dislocations based on interior discontinuities , 2007 .

[36]  Ladislas P. Kubin,et al.  Homogenization method for a discrete-continuum simulation of dislocation dynamics , 2001 .

[37]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[38]  A. Needleman,et al.  Dislocation Plasticity Effects on Interfacial Fracture , 2003 .

[39]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[40]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[41]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[42]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[43]  Yang Xiang,et al.  A level set method for dislocation dynamics , 2003 .

[44]  Ted Belytschko,et al.  Dislocations by partition of unity , 2005 .

[45]  Y. Chou,et al.  Edge Dislocations in Anisotropic Inhomogeneous Media , 1972 .

[46]  Yang Xiang,et al.  Level set simulations of dislocation-particle bypass mechanisms , 2004 .