Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface

[1]  S. Pantelides,et al.  Direct Visualization of Localized Vibrations at Complex Grain Boundaries , 2022, Advanced materials.

[2]  Lai Wang,et al.  Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor , 2021, Proceedings of the National Academy of Sciences.

[3]  Yuanwei Sun,et al.  Measuring phonon dispersion at an interface , 2021, Nature.

[4]  A. Damascelli,et al.  High-order replica bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy , 2021, Nature Communications.

[5]  Xiaoqing Pan,et al.  Experimental observation of localized interfacial phonon modes , 2021, Nature Communications.

[6]  Xingxu Yan,et al.  Nanoscale imaging of phonon dynamics by electron microscopy , 2021, Nature.

[7]  T. Beechem,et al.  Nanoscale Phonon Spectroscopy Reveals Emergent Interface Vibrational Structure of Superlattices , 2021, 2105.10030.

[8]  A. Akey,et al.  Imaging Se diffusion across the FeSe/SrTiO$_3$ interface , 2021, 2104.01904.

[9]  G. Kothleitner,et al.  Three-dimensional vectorial imaging of surface phonon polaritons , 2021, Science.

[10]  A. Bostwick,et al.  Interfacial Electron-Phonon Coupling Constants Extracted from Intrinsic Replica Bands in Monolayer FeSe/SrTiO_{3}. , 2021, Physical review letters.

[11]  Xiaoqing Pan,et al.  Single-defect phonons imaged by electron microscopy , 2021, Nature.

[12]  C. Ahn,et al.  Picoscale structural insight into superconductivity of monolayer FeSe/SrTiO3 , 2020, Science Advances.

[13]  Q. Ramasse,et al.  Single-atom vibrational spectroscopy in the scanning transmission electron microscope , 2020, Science.

[14]  Qinghua Zhang,et al.  Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3−δ , 2019 .

[15]  L. Allen,et al.  Phonon Spectroscopy at Atomic Resolution. , 2019, Physical review letters.

[16]  F. Mauri,et al.  Position and momentum mapping of vibrations in graphene nanostructures , 2018, Nature.

[17]  W. Qin,et al.  Enhanced Superconducting State in FeSe/SrTiO_{3} by a Dynamic Interfacial Polaron Mechanism. , 2018, Physical review letters.

[18]  L. Marks,et al.  Ab Initio Predictions of Double-Layer TiO2-Terminated SrTiO3(001) Surface Reconstructions , 2018, The Journal of Physical Chemistry C.

[19]  E. Tosatti,et al.  Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces , 2018, Nature Communications.

[20]  E. Meyer,et al.  Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces , 2018, Nature Communications.

[21]  D. Leonard,et al.  Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe/SrTiO3 , 2018, Physical Review B.

[22]  Yan Wang,et al.  Lattice dynamics of ultrathin FeSe films on SrTiO 3 , 2018, 1801.01644.

[23]  G. Sawatzky,et al.  Electron Phonon Coupling versus Photoelectron Energy Loss at the Origin of Replica Bands in Photoemission of FeSe on SrTiO_{3}. , 2017, Physical review letters.

[24]  X. Lou,et al.  Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface , 2017, Nature Communications.

[25]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Q. Xue,et al.  Origin of charge transfer and enhanced electron–phonon coupling in single unit-cell FeSe films on SrTiO3 , 2017, Nature Communications.

[27]  P. Batson,et al.  Mapping vibrational surface and bulk modes in a single nanocube , 2017, Nature.

[28]  J. Moodera,et al.  Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface , 2017, Science Advances.

[29]  Q. Xue,et al.  Role of SrTiO 3 phonon penetrating into thin FeSe films in the enhancement of superconductivity , 2016, 1605.06941.

[30]  A. Linscheid Electronic properties of the FeSe/STO interface from first-principle calculations , 2016, 1605.02244.

[31]  A. Millis,et al.  Charge transfer and electron-phonon coupling in monolayer FeSe on Nb-doped SrTiO 3 , 2016, 1603.02728.

[32]  Yan Wang,et al.  Ab initio study of cross-interface electron-phonon couplings in FeSe thin films on SrTiO 3 and BaTiO 3 , 2016, 1602.03288.

[33]  Qinghua Zhang,et al.  Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy , 2015, 1512.05203.

[34]  Q. Xue,et al.  Interface-enhanced electron-phonon coupling and high-temperature superconductivity in potassium-coated ultrathin FeSe films on SrTiO3 , 2015, 1508.06368.

[35]  Yan Wang,et al.  Enhanced superconductivity due to forward scattering in FeSe thin films on SrTiO3 substrates , 2015, 1507.03967.

[36]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[37]  X. Gong,et al.  Oxygen Vacancy Induced Flat Phonon Mode at FeSe /SrTiO3 interface , 2015, Scientific Reports.

[38]  Q. Xue,et al.  Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. , 2015, Nature materials.

[39]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[40]  G. Huang,et al.  Electron-phonon coupling enhanced by the FeSe/SrTiO3 interface , 2014 .

[41]  Z. K. Liu,et al.  Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 , 2013, Nature.

[42]  A. Hirata,et al.  Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films , 2013, 1311.5370.

[43]  T. Xiang,et al.  Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. , 2013, Nature materials.

[44]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[46]  O. Bunk,et al.  Surface of strontium titanate. , 2007, Physical review letters.

[47]  D. Muller,et al.  Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. , 2006, Ultramicroscopy.

[48]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  Zeyher,et al.  Influence of strong electron correlations on the electron-phonon coupling in high-Tc oxides. , 1994, Physical review. B, Condensed matter.

[51]  P. B. Allen,et al.  SUPERCONDUCTIVITY AND PHONON SOFTENING. , 1972 .

[52]  P. B. Allen Neutron spectroscopy of superconductors , 1972 .

[53]  E. Meyer,et al.  Mechanical dissipation from charge and spin transitions in oxygen deficient SrTiO 3 , 2018 .

[54]  S. Ismail-Beigi,et al.  Role of double TiO_{2} layers at the interface of FeSe/SrTiO_{3} superconductors , 2016 .

[55]  W. Zhang 张,et al.  Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3 , 2012 .

[56]  C. Koch Determination of core structure periodicity and point defect density along dislocations , 2002 .