Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip

SUMMARY The inversion of teleseismic receiver functions for lithospheric structure is difficult due to the non-linearity of the problem, which is greatly increased in the presence of dipping interfaces and layer anisotropy. Given an efficient ray-theoretical tool for forward-modelling teleseismic seismograms, we perform a directed Monte Carlo search technique using the neighbourhood algorithm of Sambridge, enabling us to search 20–30 parameters in a reasonable amount of computer time. Tests on synthetic data reveal inherent velocity–depth trade-offs in typical data sets, due to the limited moveout present in teleseismic Ps; the azimuth of the anisotropic symmetry axis and the strike of a dipping interface prove to be well-resolved given adequate backazimuthal coverage. We apply this technique to two single-station data sets. The first, from permanent station PGC, Vancouver Island, British Columbia, displays dipping low-velocity sediment layers in the mid-crust. The second, from a station at the northern end of the Tibetan plateau operating in 1991 and 1992, requires a sequence of thick crustal anisotropic layers to explain the observed pattern of receiver-function arrivals.

[1]  G. Zandt,et al.  Crustal Fabric in the Tibetan Plateau based on Waveform Inversions , 2002 .

[2]  J. Diebold Three-dimensional traveltime equation for dipping layers , 1987 .

[3]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[6]  J. Cassidy A comparison of the receiver structure beneath stations of the Canadian National Seismograph Network1 , 1995 .

[7]  R. Kind,et al.  Receiver functions at the stations of the German Regional Seismic Network (GRSN) , 1995 .

[8]  R. Nowack,et al.  Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms , 2000 .

[9]  P. Richards,et al.  Generalized ray theory for seismic waves in structures with planar nonparallel interfaces , 1991 .

[10]  Malcolm Sambridge,et al.  Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure , 1996 .

[11]  R. Snieder,et al.  The NARS-DEEP Project , 1999 .

[12]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[13]  George E. Randall,et al.  Efficient calculation of complete differential seismograms for laterally homogeneous earth models , 1994 .

[14]  J. Ebel,et al.  The receiver structure beneath the China Digital Seismograph Network stations , 1999, Bulletin of the Seismological Society of America.

[15]  J. Cassidy,et al.  S wave velocity structure of the Northern Cascadia Subduction Zone , 1993 .

[16]  M. Bostock,et al.  Modelling teleseismic waves in dipping anisotropic structures , 2000 .

[17]  Xinhua Sun,et al.  New objective functions for waveform inversion , 1998 .

[18]  Vadim Levin,et al.  P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation , 1997 .

[19]  G. Randall,et al.  On the nonuniqueness of receiver function inversions , 1990 .

[20]  A. Green,et al.  LITHOPROBE-southern Vancouver Island: Cenozoic subduction complex imaged by deep seismic reflections: Reply , 1987 .

[21]  J. Cassidy,et al.  Shear wave constraints on a deep crustal reflective zone beneath Vancouver Island , 1991 .

[22]  M. Bostock,et al.  Upper mantle structure of the northern Cascadia subduction zone , 1995 .

[23]  Daniel E. McNamara,et al.  Shear wave anisotropy beneath the Tibetan Plateau , 1994 .

[24]  Vadim Levin,et al.  P-SH Conversions in Layered Media with Hexagonally Symmetric Anisotropy: A CookBook , 1998 .

[25]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[26]  C. Langston,et al.  Dipping structure under Dourbes, Belgium, determined by receiver function modeling and inversion , 1995, Bulletin of the Seismological Society of America.

[27]  B. Romanowicz,et al.  Inversion of teleseismic S particle motion for azimuthal anisotropy in the upper mantle: a feasibility study , 1991 .

[28]  George E. Randall,et al.  Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions , 1995, Bulletin of the Seismological Society of America.

[29]  C. Ammon,et al.  Continental crust composition constrained by measurements of crustal Poisson's ratio , 1995, Nature.

[30]  S. Roecker,et al.  Receiver functions for the Tien Shan Analog Broadband Network: Contrasts in the evolution of structures across the Talasso‐Fergana Fault , 1993 .

[31]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .