Strings in Time-Dependent Orbifolds

We continue and extend our earlier investigation ``Strings in a Time-Dependent Orbifold'' (hep-th/0204168). We formulate conditions for an orbifold to be amenable to perturbative string analysis and classify the low dimensional orbifolds satisfying these conditions. We analyze the tree and torus amplitudes of some of these orbifolds. The tree amplitudes exhibit a new kind of infrared divergences which are a result of some ultraviolet effects. These UV enhanced IR divergences can be interpreted as due to back reaction of the geometry. We argue that for this reason the three dimensional parabolic orbifold is not amenable to perturbation theory. Similarly, the smooth four dimensional null-brane tensored with sufficiently few noncompact dimensions also appears problematic. However, when the number of noncompact dimensions is sufficiently large perturbation theory in these time dependent backgrounds seems consistent.

[1]  V. Balasubramanian,et al.  A space-time orbifold: A toy model for a cosmological singularity , 2002, hep-th/0202187.

[2]  D. Grumiller,et al.  Non-existence of a dilaton gravity action for the exact string black hole , 2002, hep-th/0210060.

[3]  V. Balasubramanian,et al.  The dual of nothing , 2002, hep-th/0205290.

[4]  A. Lawrence Instability of 3d Null Singularities , 2002, hep-th/0205288.

[5]  B. Craps,et al.  String Propagation in the Presence of Cosmological Singularities , 2002, hep-th/0205101.

[6]  S. Kachru,et al.  Bouncing brane cosmologies from warped string compactifications , 2002, hep-th/0205209.

[7]  C. Kounnas,et al.  A resolution of the cosmological singularity with orientifolds , 2002, hep-th/0204261.

[8]  D. Kutasov,et al.  From big bang to big crunch and beyond , 2002, hep-th/0204189.

[9]  G. Moore,et al.  Strings in a time dependent orbifold , 2002, hep-th/0204168.

[10]  N. Turok,et al.  Quantum fields in a big-crunch–big-bang spacetime , 2002, hep-th/0204091.

[11]  E. Kiritsis,et al.  Strings in homogeneous gravitational waves and null holography , 2002, hep-th/0204004.

[12]  E. Silverstein,et al.  Clean Time-Dependent String Backgrounds from Bubble Baths , 2002, hep-th/0204158.

[13]  Ashoke Sen,et al.  Rolling Tachyon , 2002, hep-th/0203211.

[14]  J. Simón The geometry of null rotation identifications , 2002, hep-th/0203201.

[15]  N. Nekrasov Milne universe, tachyons, and quantum group , 2002, hep-th/0203112.

[16]  A New cosmological scenario in string theory , 2002, hep-th/0203031.

[17]  A. Strominger,et al.  Space - like branes , 2002, hep-th/0202210.

[18]  G. Papadopoulos,et al.  Penrose limits, supergravity and brane dynamics , 2002, hep-th/0202111.

[19]  N. Seiberg From Big Crunch To Big Bang - Is It Possible? , 2002, hep-th/0201039.

[20]  P. Steinhardt,et al.  From big crunch to big bang , 2001, hep-th/0108187.

[21]  Makoto Natsuume The Heterotic Enhancon , 2001, hep-th/0111044.

[22]  T. Takayanagi,et al.  D-branes in Melvin background , 2001, hep-th/0110200.

[23]  J. Figueroa-O’Farrill,et al.  Generalised supersymmetric fluxbranes , 2001, hep-th/0110170.

[24]  T. Takayanagi,et al.  Orbifolds as Melvin geometry , 2001, hep-th/0110099.

[25]  E. Witten Quantum Gravity In De Sitter Space , 2001, hep-th/0106109.

[26]  José MiguelFigueroa-O'Farrill Breaking the sanserifM-waves , 2000 .

[27]  J. Figueroa-O'Farrill,et al.  Breaking the -waves , 2000 .

[28]  J. Russo,et al.  Magnetic flux tube models in superstring theory , 1995, hep-th/9508068.

[29]  A. Tseytlin Exact string solutions and duality , 1994, hep-th/9407099.

[30]  C. Manogue,et al.  Finite Lorentz transformations, automorphisms, and division algebras , 1993, hep-th/9302044.

[31]  Zanelli,et al.  Geometry of the 2+1 black hole. , 1993, Physical review. D, Particles and fields.

[32]  Zanelli,et al.  Black hole in three-dimensional spacetime. , 1992, Physical review letters.

[33]  G. Horowitz,et al.  Singular string solutions with nonsingular initial data , 1991 .

[34]  Steif,et al.  Strings in strong gravitational fields. , 1990, Physical review. D, Particles and fields.

[35]  Soldate,et al.  High-energy unitarity of gravitation and strings. , 1988, Physical review. D, Particles and fields.

[36]  D. Amati,et al.  CLASSICAL AND QUANTUM GRAVITY EFFECTS FROM PLANCKIAN ENERGY SUPERSTRING COLLISIONS , 1988 .

[37]  D. Amati,et al.  Superstring collisions at planckian energies , 1987 .

[38]  R. Rohm Spontaneous supersymmetry breaking in supersymmetric string theories , 1984 .

[39]  G. Gibbons Quantized fields propagating in plane-wave spacetimes , 1975 .

[40]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.