Global exponential stabilization of language constrained switched system based on the S-procedure approach
暂无分享,去创建一个
Yang Song | Wang Yan | Taicheng Yang | Yunyun Jin | Yang Song | Taicheng Yang | Yunyun Jin | Wang Yan
[1] Antoine Girard,et al. Stabilization and control Lyapunov functions for language constrained discrete-time switched linear systems , 2018, Autom..
[2] Antoine Girard,et al. Language constrained stabilization of discrete-time switched linear systems: a Lyapunov-Metzler inequalities approach , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).
[3] Weiming Xiang. Necessary and Sufficient Condition for Stability of Switched Uncertain Linear Systems Under Dwell-Time Constraint , 2016, IEEE Transactions on Automatic Control.
[4] Amir Ali Ahmadi,et al. Joint Spectral Radius and Path-Complete Graph Lyapunov Functions , 2011, SIAM J. Control. Optim..
[5] Jun Zhao,et al. Stabilization of networked switched linear systems: An asynchronous switching delay system approach , 2015, Syst. Control. Lett..
[6] Weiming Xiang,et al. Robust Exponential Stability and Disturbance Attenuation for Discrete-Time Switched Systems Under Arbitrary Switching , 2018, IEEE Transactions on Automatic Control.
[7] Hai Lin,et al. Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.
[8] Raphaël M. Jungers,et al. An Entropy-Based Bound for the Computational Complexity of a Switched System , 2019, IEEE Transactions on Automatic Control.
[9] Jianghai Hu,et al. On the graph control Lyapunov function for stabilization of discrete-time switched linear systems , 2016, 2017 American Control Conference (ACC).
[10] M. Cheng,et al. Computational method for optimal machine scheduling problem with maintenance and production , 2017, Int. J. Prod. Res..
[11] Corentin Briat,et al. Convex lifted conditions for robust l2-stability analysis and l2-stabilization of linear discrete-time switched systems with minimum dwell-time constraint , 2014, Autom..
[12] W. P. M. H. Heemels,et al. On Lyapunov-Metzler Inequalities and S-Procedure Characterizations for the Stabilization of Switched Linear Systems , 2017, IEEE Transactions on Automatic Control.
[13] Mahesh Viswanathan,et al. Stability Analysis of Switched Linear Systems Defined by Regular Languages , 2017, IEEE Transactions on Automatic Control.
[14] Rapha L. Jungers. The Joint Spectral Radius , 2009 .
[15] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[16] J. Geromel,et al. Stability and stabilization of discrete time switched systems , 2006 .
[17] Mahesh Viswanathan,et al. On Convergence of Concurrent Systems under Regular Interactions , 2009, CONCUR.
[18] Noam Chomsky,et al. On Certain Formal Properties of Grammars , 1959, Inf. Control..
[19] Amir Ali Ahmadi,et al. A Characterization of Lyapunov Inequalities for Stability of Switched Systems , 2016, IEEE Transactions on Automatic Control.
[20] Raphaël M. Jungers,et al. Stability of discrete-time switching systems with constrained switching sequences , 2015, Autom..
[21] Raphaël M. Jungers,et al. Path-Complete Graphs and Common Lyapunov Functions , 2017, HSCC.
[22] Antoine Girard,et al. On the Stabilizability of Discrete-Time Switched Linear Systems: Novel Conditions and Comparisons , 2016, IEEE Transactions on Automatic Control.
[23] Jarkko Kari,et al. Synchronizing Finite Automata on Eulerian Digraphs , 2003, MFCS.
[24] Xiongping Dai,et al. A Gel'fand-type spectral radius formula and stability of linear constrained switching systems , 2011, ArXiv.
[25] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[26] Jun Fu,et al. Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers , 2015, Autom..