Databases for interval probabilities

We present a database framework for the efficient storage and manipulation of interval probability distributions and their associated information. Although work on interval probabilities and on probabilistic databases has appeared before, ours is the first to combine these into a coherent and mathematically sound framework including both standard relational queries and queries based on probability theory. In particular, our query algebra allows users not only to query existing interval probability distributions, but also to construct new ones by means of conditionalization and marginalization, as well as other more common database operations. © 2004 Wiley Periodicals, Inc. Int J Int Syst 19: 789–815, 2004.

[1]  V. S. Subrahmanian,et al.  Hybrid Probabilistic Programs , 2000, J. Log. Program..

[2]  H. V. Jagadish,et al.  ProTDB: Probabilistic Data in XML , 2002, VLDB.

[3]  Alex Dekhtyar,et al.  Semistructured probabilistic databases , 2001, Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001.

[4]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[5]  Alex Dekhtyar,et al.  Query Algebra Operations for Interval Probabilities , 2003, DEXA.

[6]  Angelo Gilio,et al.  A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments , 2000, Int. J. Approx. Reason..

[7]  George Boole,et al.  The Laws of Thought , 2003 .

[8]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[9]  C. V. Ramamoorthy,et al.  Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..

[10]  V. S. Subrahmanian,et al.  Probabilistic Interval XML , 2003, ICDT.

[11]  Ralph Arnote,et al.  Hong Kong (China) , 1996, OECD/G20 Base Erosion and Profit Shifting Project.

[12]  Laks V. S. Lakshmanan,et al.  ProbView: a flexible probabilistic database system , 1997, TODS.

[13]  C. M. Sperberg-McQueen,et al.  Extensible markup language , 1997 .

[14]  Hector Garcia-Molina,et al.  The Management of Probabilistic Data , 1992, IEEE Trans. Knowl. Data Eng..

[15]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[16]  Alex Dekhtyar,et al.  Can Probabilistic Databases Help Elect Qualified Officials? , 2003, FLAIRS.

[17]  Serafín Moral,et al.  Using probability trees to compute marginals with imprecise probabilities , 2002, Int. J. Approx. Reason..

[18]  Henry E. Kyburg,et al.  INTERVAL-VALUED PROBABILITIES , 2000 .

[19]  Alex Dekhtyar,et al.  A Framework for Management of Semistructured Probabilistic Data , 2005, Journal of Intelligent Information Systems.

[20]  Sumit Sarkar,et al.  A probabilistic relational model and algebra , 1996, TODS.

[21]  DeyDebabrata,et al.  A probabilistic relational model and algebra , 1996 .

[22]  V. S. Subrahmanian,et al.  Hybrid probabilistic logic programs , 1997 .

[23]  Alex Dekhtyar,et al.  Conditionalization for Interval Probabilities , 2002 .

[24]  Michael Pittarelli,et al.  The Theory of Probabilistic Databases , 1987, VLDB.

[25]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[26]  Andr Es Cano,et al.  Using Probability Trees to Compute Marginals with Imprecise Probabilities , 2002 .

[27]  Robert Givan,et al.  Bounded-parameter Markov decision processes , 2000, Artif. Intell..

[28]  Robert B. Ross,et al.  Probabilistic temporal databases, I: algebra , 2001, TODS.

[29]  Thomas Lukasiewicz,et al.  Probabilistic Logic under Coherence, Model-Theoretic Probabilistic Logic, and Default Reasoning , 2001, ECSQARU.

[30]  C. M. Sperberg-McQueen,et al.  eXtensible Markup Language (XML) 1.0 (Second Edition) , 2000 .

[31]  Michael Wolfe,et al.  J+ = J , 1994, ACM SIGPLAN Notices.

[32]  Alex Dekhtyar,et al.  Semistructured Probalistic Databases. , 2001 .

[33]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..