Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows

In boundary-layer flows it is possible to reduce the friction drag by breaking the path from laminar to turbulent state. In low turbulence environments, the laminar-to-turbulent transition is dominated by local flow instabilities – Tollmien-Schlichting (TS) waves – that exponentially grows while being con- vected by the flow and, eventually, lead to transition. Hence, by attenuating these disturbances via localised forcing in the flow it is possible to delay farther downstream the onset of turbulence and reduce the friction drag.Reactive control techniques are widely investigated to this end. The aim of this work is to compare model-based and adaptive control techniques and show how the adaptivity is crucial to control TS-waves in real applications. The control design consists in (i) choosing sensors and actuators and (ii) designing the system responsible to process on-line the measurement signals in order to compute an appropriate forcing by the actuators. This system, called compen- sator, can be static or adaptive, depending on the possibility of self-adjusting its response to unmodelled flow dynamics. A Linear Quadratic Gaussian (LQG) regulator is chosen as representative of static controllers. Direct numerical simulations of the flow are performed to provide a model for the compensator design and test its performance. An adaptive Filtered-X Least-Mean-Squares (FXLMS) compensator is also designed for the same flow case and its per- formance is compared to the model-based compensator via simulations and experiments. Although the LQG regulator behaves better at design conditions, it lacks robustness to small flow variations. On the other hand, the FXLMS compensator proved to be able to adapt its response to overcome the varied conditions and perform an adequate control action.It is thus found that an adaptive control technique is more suitable to delay the laminar-to-turbulent transition in situations where an accurate model of the flow is not available.

[1]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[2]  Kelly Cohen,et al.  Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition , 2008, Journal of Fluid Mechanics.

[3]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[4]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[5]  T. R. Bewley,et al.  Spatially localized convolution kernels for feedback control of transitional flows , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[6]  G. I. Siv Ashinsky,et al.  Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1988 .

[7]  D. Henningson,et al.  Feedback control of three-dimensional optimal disturbances using reduced-order models , 2011, Journal of Fluid Mechanics.

[8]  P. Schmid Nonmodal Stability Theory , 2007 .

[9]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[10]  H. Schlichting Boundary Layer Theory , 1955 .

[11]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[12]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[13]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[14]  Dan S. Henningson,et al.  Linear feedback control and estimation applied to instabilities in spatially developing boundary layers , 2007, Journal of Fluid Mechanics.

[15]  Y S J O S H I,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997 .

[16]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.

[17]  Peter J. Schmid,et al.  Control of amplifier flows using subspace identification techniques , 2013, Journal of Fluid Mechanics.

[18]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  S.J. Elliott,et al.  Active noise control , 1993, IEEE Signal Processing Magazine.

[20]  W. Nitsche,et al.  On active control of laminar–turbulent transition on two-dimensional wings , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Dan S. Henningson,et al.  SIMSON : A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows , 2007 .

[22]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[23]  B. J. McKeon,et al.  Experimental manipulation of wall turbulence: a systems approach , 2013 .

[24]  Peter J. Schmid,et al.  A physics-based approach to flow control using system identification , 2012, Journal of Fluid Mechanics.

[25]  Roger Temam,et al.  DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.

[26]  Dan S. Henningson,et al.  Linear feedback control and estimation of transition in plane channel flow , 2003, Journal of Fluid Mechanics.

[27]  Michel Versluis,et al.  High-speed imaging in fluids , 2013 .

[28]  Alessandro Bottaro,et al.  Optimal Control of Nonmodal Disturbances in Boundary Layers , 2001 .

[29]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[30]  D. Sipp,et al.  Closed-Loop Control of Fluid Flow : a Review of Linear Approaches and Tools for the Stabilization of Transitional Flows , 2013 .

[31]  W. Nitsche,et al.  Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems , 2003 .

[32]  Jochen Kriegseis,et al.  Performance Characterization and Quantification of Dielectric Barrier Discharge Plasma Actuators , 2011 .

[33]  Karl Mårtensson,et al.  Gradient Methods for Large-Scale and Distributed Linear Quadratic Control , 2012 .

[34]  Peter Benner,et al.  Numerical solution of large‐scale Lyapunov equations, Riccati equations, and linear‐quadratic optimal control problems , 2008, Numer. Linear Algebra Appl..

[35]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[36]  Steve Rogers,et al.  Adaptive Filter Theory , 1996 .

[37]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[38]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[39]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[40]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[41]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[42]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[43]  Fredrik Lundell,et al.  Reactive control of transition induced by free-stream turbulence: an experimental demonstration , 2007, Journal of Fluid Mechanics.

[44]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[45]  Jason L. Speyer,et al.  Application of reduced-order controller to turbulent flows for drag reduction , 2001 .

[46]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[47]  Ruben Rathnasingham,et al.  Active control of turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[48]  Paolo Luchini,et al.  Riccati-less optimal control of bluff-body wakes , 2010 .

[49]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[50]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[51]  Stuart A. Jacobson,et al.  Active control of streamwise vortices and streaks in boundary layers , 1998, Journal of Fluid Mechanics.

[52]  John Kim,et al.  Control and system identification of a separated flow , 2008 .

[53]  Dan S. Henningson,et al.  Model Reduction of the Nonlinear Complex Ginzburg-Landau Equation , 2010, SIAM J. Appl. Dyn. Syst..

[54]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[55]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[56]  D. Henningson,et al.  Input–output analysis, model reduction and control of the flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[57]  D. S. Henningson,et al.  Transition delay using control theory , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  N. Fabbiane,et al.  Centralised Versus Decentralised Active Control of Boundary Layer Instabilities , 2014 .

[59]  Cameron Tropea,et al.  Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators , 2008 .

[60]  Imran Akhtar,et al.  On Commutation of Reduction and Control: Linear Feedback Control of a von Kármán Vortex Street , 2010 .

[61]  Ronald D. Joslin,et al.  Issues in active flow control: theory, control, simulation, and experiment , 2004 .

[62]  Bassam Bamieh,et al.  Componentwise energy amplification in channel flows , 2005, Journal of Fluid Mechanics.

[63]  William S. Saric,et al.  BOUNDARY-LAYER RECEPTIVITY TO FREESTREAM DISTURBANCES , 2002 .

[64]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[65]  R. W. Milling Tollmien–Schlichting wave cancellation , 1981 .

[66]  Wolfgang Nitsche,et al.  Laminar flow control with distributed surface actuation: damping Tollmien-Schlichting waves with active surface displacement , 2013 .

[67]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[68]  C. Rowley,et al.  Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers , 2013, Journal of Fluid Mechanics.

[69]  Jamey Jacob,et al.  Numerical Simulations of Plasma Based Flow Control Applications , 2005 .

[70]  P. Benner,et al.  Solving large-scale control problems , 2004, IEEE Control Systems.

[71]  Mohamed Gad-el-Hak,et al.  Flow Control: Passive, Active, and Reactive Flow Management , 2000 .

[72]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[73]  Dan S. Henningson,et al.  Transition delay in a boundary layer flow using active control , 2013, Journal of Fluid Mechanics.

[74]  P. Schmid,et al.  Stability and Transition in Shear Flows. Applied Mathematical Sciences, Vol. 142 , 2002 .

[75]  and Charles K. Taft Reswick,et al.  Introduction to Dynamic Systems , 1967 .

[76]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[77]  Dan S. Henningson,et al.  Feedback control of instabilities in the two-dimensional Blasius boundary layer : The role of sensors and actuators , 2013 .

[78]  Thomas Bewley,et al.  Flow control: new challenges for a new Renaissance , 2001 .

[79]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[80]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[81]  Dan S. Henningson,et al.  Relaminarization of Reτ=100 turbulence using gain scheduling and linear state-feedback control , 2003 .

[82]  Sven Grundmann,et al.  Dielectric-Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[83]  Parviz Moin,et al.  Active turbulence control for drag reduction in wall-bounded flows , 1994, Journal of Fluid Mechanics.

[84]  Dan S. Henningson,et al.  DNS AND LES OF ESTIMATION AND CONTROL OF TRANSITION IN BOUNDARY LAYERS SUBJECT TO FREE-STREAM TURBULENCE , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[85]  Mohamed Gad-el-Hak,et al.  Modern developments in flow control , 1996 .

[86]  H. Banks,et al.  A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems , 1991 .

[87]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[88]  Jason L. Speyer,et al.  Robust reduced-order control of turbulent channel flows via distributed sensors and actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[89]  Dan S. Henningson,et al.  State estimation in wall-bounded flow systems. Part 2. Turbulent flows , 2006, Journal of Fluid Mechanics.

[90]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[91]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[92]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[93]  T. Schneider,et al.  A Linear Systems Approach to Flow Control , 2007 .

[94]  B. Anderson,et al.  Controller Reduction: Concepts and Approaches , 1987, 1987 American Control Conference.

[95]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[96]  C. Guaranteed Margins for LQG Regulators , 1972 .