Fast direct solution of the Helmholtz equation with a perfectly matched layer or an absorbing boundary condition

We consider the efficient numerical solution of the Helmholtz equation in a rectangular domain with a perfectly matched layer (PML) or an absorbing boundary condition (ABC). Standard bilinear (trilinear) finite-element discretization on an orthogonal mesh leads to a separable system of linear equations for which we describe a cyclic reduction-type fast direct solver. We present numerical studies to estimate the reflection of waves caused by an absorbing boundary and a PML, and we optimize certain parameters of the layer to minimize the reflection. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Matti Lassas,et al.  Analysis of the PML equations in general convex geometry , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Tuomo Rossi,et al.  A Parallel Fast Direct Solver for Block Tridiagonal Systems with Separable Matrices of Arbitrary Dimension , 1999, SIAM J. Sci. Comput..

[3]  Tuomo Rossi,et al.  A Parallel Fictitious Domain Method for the Three-Dimensional Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[4]  Thomas L. Geers,et al.  Evaluation of the Perfectly Matched Layer for Computational Acoustics , 1998 .

[5]  Yuri A. Kuznetsov,et al.  Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems , 1998 .

[6]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[7]  Oliver G. Ernst,et al.  A finite-element capacitance matrix method for exterior Helmholtz problems , 1996 .

[8]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[9]  F. Hu On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .

[10]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[11]  Ivo Babuška,et al.  A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems , 1998 .

[12]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[13]  C. R. Crawford,et al.  Reduction of a band-symmetric generalized eigenvalue problem , 1973, Commun. ACM.

[14]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[17]  Patrick Joly,et al.  Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .

[18]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[19]  Charbel Farhat,et al.  Iterative solution of large‐scale acoustic scattering problems with multiple right hand‐sides by a domain decomposition method with Lagrange multipliers , 2001 .

[20]  S. Marin,et al.  A finite element method for exterior interface problems , 1980 .

[21]  Frank Ihlenburg,et al.  On the pollution effect in FE solutions of the 3D-Helmholtz equation , 1999 .

[22]  Peter G. Petropoulos,et al.  On the Termination of the Perfectly Matched Layer with Local Absorbing Boundary Conditions , 1998 .

[23]  D. Givoli Non-reflecting boundary conditions , 1991 .

[24]  Marcus J. Grote,et al.  On nonreflecting boundary conditions , 1995 .

[25]  Klaus Gerdes A summary of infinite element formulations for exterior Helmholtz problems , 1998 .

[26]  Alexandra Banegas,et al.  Fast Poisson solvers for problems with sparsity , 1978 .

[27]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[28]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[29]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[30]  Yuri A. Kuznetsov,et al.  Fictitious Domain Methods For The Numerical Solution Of Three-Dimensional Acoustic Scattering Proble , 1999 .

[31]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[32]  Tuomo Rossi,et al.  A Nonstandard Cyclic Reduction Method, Its Variants and Stability , 1999, SIAM J. Matrix Anal. Appl..

[33]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[34]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .