Generalized Additive Models

Likelihood-based regression models such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariates Xlt X2, ■•-, Xp. We introduce the class of generalized additive models which replaces the linear form 2 (IjXj by a sum of smooth functions _£ $j(Xj). The Sj(-)'s are unspecified functions that are estimated using a scatterplot smoother, in an iterative procedure we call the local scoring algorithm. The technique is applicable to any likelihood-based regression model: the class of generalized linear models contains many of these. In this class the linear predictor tj = £ fyXj is replaced by the additive predictor £ Sj(Xj); hence, the name generalized additive models. We illustrate the technique with binary response and survival data. In both cases, the method proves to be useful in uncovering nonlinear covariate effects. It has the advantage of being completely auto matic, i.e., no "detective work" is needed on the part of the statistician. As a theoretical underpinning, the technique is viewed as an empirical method of maximizing the expected log likelihood, or equivalently, of minimizing the Kullback-Leibler distance to the true model.

[1]  C. Reinsch Smoothing by spline functions , 1967 .

[2]  David R. Cox The analysis of binary data , 1970 .

[3]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[4]  J. Crowley,et al.  Covariance Analysis of Heart Transplant Survival Data , 1977 .

[5]  Forrest W. Young,et al.  The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features , 1978 .

[6]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[7]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[8]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[9]  Jerome H. Friedman,et al.  Smoothing of Scatterplots , 1982 .

[10]  Rupert G. Miller,et al.  Regression with censored data , 1982 .

[11]  R. Tibshirani,et al.  The Monotone Smoothing of Scatterplots , 1984 .

[12]  D. Pregibon,et al.  Graphical Methods for Assessing Logistic Regression Models , 1984 .

[13]  A. Owen THE ESTIMATION OF SMOOTH CURVES* , 1984 .

[14]  IItevor Hattie Principal Curves and Surfaces , 1984 .

[15]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[16]  B. Yandell,et al.  Semi-Parametric Generalized Linear Models. , 1985 .

[17]  C. J. Stone,et al.  The Dimensionality Reduction Principle for Generalized Additive Models , 1986 .

[18]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[19]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .

[20]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[21]  T. Hastie,et al.  Regression with an ordered categorical response. , 1989, Statistics in medicine.

[22]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[23]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[24]  R. Tibshirani,et al.  Warm induction blood cardioplegia in the infant. A technique to avoid rapid cooling myocardial contracture. , 1990, The Journal of thoracic and cardiovascular surgery.

[25]  T. Hastie,et al.  An analysis of gestational age, neonatal size and neonatal death using nonparametric logistic regression. , 1990, Journal of clinical epidemiology.

[26]  G. Wahba Spline models for observational data , 1990 .

[27]  David W. Scott The New S Language , 1990 .

[28]  J. Friedman Multivariate adaptive regression splines , 1990 .

[29]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[30]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[31]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[32]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[33]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[34]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[35]  J. Fourier,et al.  NON-PARAMETRIC LOGISTIC REGRESSION , 1999 .

[36]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[37]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[38]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[39]  Charles J. Stone,et al.  Additive Splines in Statistics , 2015 .

[40]  D.,et al.  Regression Models and Life-Tables , 2022 .