Deductive Multi-valued Model Checking

Model checking is a widely used technique for verifying complex concurrent systems. The models used in classical model checking methods are assumed to be complete and consistent. However, a recent body of work has shown that this is not always the case, and multi-valued logics have been proposed to represent such models, spawning an extension of classical model checking, known as, multi-valued model checking. In this paper, we define a multi-valued set based semantics for the multi-valued modal μ-calculus and present a novel interpretation of logic programs to support multi-valued sets as first-class entities, that can be used as a practical deductive multi-valued model checking framework. This framework provides a semantics preserving encoding of multi-valued transition systems, and allows verification of arbitrary multi-valued modal μ-calculus properties. A prototype implementation of this framework has also been realized.

[1]  Andreas Podelski,et al.  Set-Based Analysis of Reactive Infinite-State Systems , 1998, TACAS.

[2]  Giorgio Delzanno,et al.  Model Checking in CLP , 1999, TACAS.

[3]  Patrice Godefroid,et al.  Generalized Model Checking: Reasoning about Partial State Spaces , 2000, CONCUR.

[4]  Marsha Chechik,et al.  Multi-Valued Model Checking via Classical Model Checking , 2003, CONCUR.

[5]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[6]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[7]  Wojciech Penczek,et al.  Reducing Model Checking from Multi-valued {\rm CTL}^{\ast} to {\rm CTL}^{\ast} , 2002, CONCUR.

[8]  Supratik Mukhopadhyay,et al.  Model Checking for Timed Logic Processes , 2000, Computational Logic.

[9]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[10]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[11]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[12]  L. Bolc,et al.  Many-Valued Logics , 1992 .

[13]  Hergen Pargmann,et al.  Model Checking Using Adaptive State and Data Abstraction , 1994, CAV.

[14]  Enrico Pontelli,et al.  A constraint-based approach for specification and verification of real-time systems , 1997, Proceedings Real-Time Systems Symposium.

[15]  Cnrs Fre,et al.  Model Checking a Path (Preliminary Report) , 2003 .

[16]  Marsha Chechik,et al.  Multi-valued symbolic model-checking , 2003, TSEM.

[17]  David A. Schmidt,et al.  Denotationaisemantics: a methodology for language development , 1986 .

[18]  Marsha Chechik,et al.  Model-checking infinite state-space systems with fine-grained abstractions using SPIN , 2001, SPIN '01.

[19]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[20]  C. R. Ramakrishnan,et al.  Tabled resolution + constraints: a recipe for model checking real-time systems , 2000, Proceedings 21st IEEE Real-Time Systems Symposium.

[21]  Marsha Chechik,et al.  A framework for multi-valued reasoning over inconsistent viewpoints , 2001, Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001.

[22]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[23]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[24]  C. R. Ramakrishnan,et al.  Fully Local and Efficient Evaluation of Alternating Fixed Points (Extended Abstract) , 1998, TACAS.

[25]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[26]  Patrice Godefroid,et al.  Model Checking with Multi-valued Logics , 2004, ICALP.

[27]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[28]  C. R. Ramakrishnan,et al.  Efficient Model Checking Using Tabled Resolution , 1997, CAV.

[29]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.