An Intuitionistic Fuzzy Approach to Fuzzy Clustering of Numerical Dataset

Fuzzy c-means (FCM) clustering is one of the most widely used fuzzy clustering algorithms. However, the main disadvantage of this algorithm is its sensitivity to noise and outliers. Intuitionistic fuzzy set is a suitable tool to cope with imperfectly defined facts and data, as well as with imprecise knowledge. So far, there exists a little investigation on FCM algorithm for clustering intuitionistic fuzzy data. This paper focuses mainly on two aspects. Firstly, it proposes an intuitionistic fuzzy representation (IFR) scheme for numerical dataset and applies the modified FCM clustering for clustering intuitionistic fuzzy (IF) data and comparing results with that of crisp and fuzzy data. Secondly, in clustering of IF data, different IF similarity measures are studied and a comparative analysis is carried out on the results. The experiments are conducted for numerical datasets of UCI machine learning data repository.

[1]  Cheng-Der Fuh,et al.  Fuzzy Clustering Based On Intuitionistic Fuzzy Relations , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[2]  Ioannis K. Vlachos,et al.  The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement , 2007, IFSA.

[3]  Amit Banerjee,et al.  The Fuzzy Mega-cluster: Robustifying FCM by Scaling Down Memberships , 2005, FSKD.

[4]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets: past, present and future , 2003, EUSFLAT Conf..

[5]  Bohdan S. Butkiewicz,et al.  Robust Fuzzy Clustering with Fuzzy Data , 2005, AWIC.

[6]  Pierpaolo D'Urso,et al.  A weighted fuzzy c , 2006, Comput. Stat. Data Anal..

[7]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[8]  Jacek M. Leski,et al.  Towards a robust fuzzy clustering , 2003, Fuzzy Sets Syst..

[9]  Janusz Kacprzyk,et al.  A measure of similarity for intuitionistic fuzzy sets , 2003, EUSFLAT Conf..

[10]  Miin-Shen Yang,et al.  Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance , 2004, Pattern Recognit. Lett..

[11]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[12]  Nikos Pelekis,et al.  Fuzzy clustering of intuitionistic fuzzy data , 2008, Int. J. Bus. Intell. Data Min..

[13]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[14]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[15]  Nikos Pelekis,et al.  Intuitionistic Fuzzy Clustering with Applications in Computer Vision , 2008, ACIVS.

[16]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..