Global and Local Optimization Algorithms for Optimal Signal Set Design

The problem of choosing an optimal signal set for non-Gaussian detection was reduced to a smooth inequality constrained mini-max nonlinear programming problem by Gockenbach and Kearsley. Here we consider the application of several optimization algorithms, both global and local, to this problem. The most promising results are obtained when special-purpose sequential quadratic programming (SQP) algorithms are embedded into stochastic global algorithms.

[1]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[2]  Don H. Johnson,et al.  Relation of signal set choice to the performance of optimal non-Gaussian detectors , 1993, IEEE Trans. Commun..

[3]  J. Fowler,et al.  Journal of Research of the National Institute of Standards and Technology INFORMATION TECHNOLOGY FOR ENGINEERING AND MANUFACTURING Gaithersburg , MD June 12-13 , 2000 , 2000 .

[4]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[5]  Richard D. Gitlin,et al.  Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise , 1974, IEEE Trans. Commun..

[6]  J. N. Herskovits,et al.  A Successive Quadratic Programming Based Feasible Directions Algorithm , 1986 .

[7]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[8]  Mark S. Gockenbach,et al.  Optimal Signal Sets for Non-Gaussian Detectors , 1999, SIAM J. Optim..

[9]  Paul T. Boggs,et al.  A Practical Algorithm for General Large Scale Nonlinear Optimization Problems , 1999, SIAM J. Optim..

[10]  Berç Rustem,et al.  An Algorithm for the Inequality-Constrained Discrete Min-Max Problem , 1998, SIAM J. Optim..

[11]  Paul T. Boggs,et al.  A Global Convergence Analysis of an Algorithm for Large-Scale Nonlinear Optimization Problems , 1999, SIAM J. Optim..

[12]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[13]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[14]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[15]  William W. Symes,et al.  An Infeasible Point Method for Minimizing the Lennard-Jones Potential , 1997, Comput. Optim. Appl..

[16]  E. Panier,et al.  A Superlinearly Convergent Method of Feasible Directions for Optimization Problems Arising in the Design of Engineering Systems , 1986 .

[17]  Peter Spellucci,et al.  A new technique for inconsistent QP problems in the SQP method , 1998, Math. Methods Oper. Res..

[18]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[19]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[20]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[21]  E. Panier,et al.  A superlinearly convergent feasible method for the solution of inequality constrained optimization problems , 1987 .

[22]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[23]  Anthony J. Kearsley The use of optimization techniques in the solution of partial differential equations from science and engineering , 1996 .

[24]  Jian L. Zhou Fast, Globally Convergent Optimization Algorithms, with Application to Engineering System Design , 1992 .