Precision bounds for gradient magnetometry with atomic ensembles

We study gradient magnetometry with an ensemble of atoms with arbitrary spin.We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated.We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.

[1]  Daniel Braun,et al.  Precision measurements of temperature and chemical potential of quantum gases , 2013, 1308.2735.

[2]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[3]  M. Kasevich,et al.  Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer , 1998 .

[4]  Jelmer J. Renema,et al.  Entanglement-assisted atomic clock beyond the projection noise limit , 2009, 0912.3895.

[5]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[6]  C. Gross,et al.  Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates , 2012, 1203.5359.

[7]  G. Szirmai,et al.  The bilinear–biquadratic model on the complete graph , 2017, 1709.06602.

[8]  Morgan W. Mitchell,et al.  Macroscopic singlet states for gradient magnetometry , 2013 .

[9]  N. P. Bigelow,et al.  Atomic quantum non-demolition measurements and squeezing , 1998 .

[10]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[11]  Denes Petz,et al.  Covariance and Fisher information in quantum mechanics , 2001, quant-ph/0106125.

[12]  Augusto Smerzi,et al.  Non-classical states of atomic ensembles: fundamentals and applications in quantum metrology , 2016 .

[13]  K. Kim,et al.  Quantum estimation of magnetic-field gradient using W-state , 2013, 1309.3994.

[14]  K. Jensen,et al.  Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[15]  M. Kasevich,et al.  Atom Interferometer Measurement of the Newtonian Constant of Gravity , 2007, Science.

[16]  P. Sekatski,et al.  Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.

[17]  G. Tóth,et al.  Detection of multipartite entanglement in the vicinity of symmetric Dicke states , 2005, quant-ph/0511237.

[18]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[19]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[20]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[21]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[22]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[23]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[24]  S. Knysh,et al.  Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.

[25]  A S Sørensen,et al.  Near-Heisenberg-limited atomic clocks in the presence of decoherence. , 2013, Physical review letters.

[26]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[27]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[28]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[29]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[30]  Marco G. Genoni,et al.  Quantum estimation of a two-phase spin rotation , 2012, 1211.7224.

[31]  M. Kasevich,et al.  Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. , 2005, Physical Review Letters.

[32]  C. Gerving,et al.  Spin-nematic squeezed vacuum in a quantum gas , 2011, Nature Physics.

[33]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[34]  M. Mitchell,et al.  High resolution magnetic vector-field imaging with cold atomic ensembles , 2011 .

[35]  P. Zoller,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[36]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[37]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[38]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[39]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[40]  Marco Barbieri,et al.  Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.

[41]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[42]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[43]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[44]  G Vallone,et al.  Experimental quantum networking protocols via four-qubit hyperentangled Dicke states. , 2012, Physical review letters.

[45]  M. Mitchell,et al.  Polarization-based light-atom quantum interface with an all-optical trap , 2008, 0812.4863.

[46]  Otto Stern,et al.  Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld , 1922 .

[47]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[48]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[49]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[50]  Alessandro Cerè,et al.  Squeezed-light optical magnetometry. , 2010, Physical review letters.

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  G. Tóth,et al.  Experimental observation of four-photon entangled Dicke state with high fidelity. , 2006, Physical review letters.

[53]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[54]  G. Tóth,et al.  Generation of macroscopic singlet states in a cold atomic ensemble. , 2014, Physical review letters.

[55]  K. Eckert,et al.  Differential atom interferometry beyond the standard quantum limit (10 pages) , 2006 .

[56]  Sabine Wolk,et al.  Estimation of gradients in quantum metrology , 2017, 1703.09123.

[57]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[58]  A. Smerzi,et al.  Phase-noise protection in quantum-enhanced differential interferometry , 2014, 1409.1703.

[59]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[60]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[61]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[62]  D. Braun,et al.  Erratum: Precision measurements of temperature and chemical potential of quantum gases [Phys. Rev. A 88, 063609 (2013)] , 2015 .

[63]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[64]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[65]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[66]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[67]  Tillmann Baumgratz,et al.  Multi-parameter quantum metrology , 2016, 1604.02615.

[68]  F. Illuminati,et al.  Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels , 2010, 1010.0442.

[69]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[70]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[71]  M. Mitchell,et al.  Real-time vector field tracking with a cold-atom magnetometer , 2013, 1303.2312.

[72]  Augusto Smerzi,et al.  Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.

[73]  Li Jing,et al.  Fitting magnetic field gradient with Heisenberg-scaling accuracy , 2014, Scientific Reports.

[74]  I. Lesanovsky,et al.  Sensing electric and magnetic fields with Bose-Einstein condensates , 2006 .

[75]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[76]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[77]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[78]  Sabine Wolk,et al.  Optimized parameter estimation in the presence of collective phase noise , 2016 .

[79]  Augusto Smerzi,et al.  Quantum theory of phase estimation , 2014, 1411.5164.

[80]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[81]  J. F. Ralph,et al.  Local versus global strategies in multiparameter estimation , 2016, 1601.05912.

[82]  John K. Stockton,et al.  Bayesian estimation of differential interferometer phase , 2007 .

[83]  G. Tóth,et al.  Generation of macroscopic singlet states in atomic ensembles , 2009, 0901.4110.