Open-phase fault operation of 5-phase induction motor drives using DTC techniques

Direct torque control (DTC) is extensively used in conventional three-phase drives as an alternative to field-oriented control methods. The standard DTC technique was originally designed to regulate two independent variables using hysteresis controllers. Recent works have extended the procedure for five-phase drives in healthy operation accounting for the additional degrees of freedom. Although one of the main advantages of multiphase machines is the ability to continue the operation in faulty conditions, the utility of DTC after the appearance of a fault has not been covered in the literature yet. This paper analyses the operation of a five-phase induction motor drive in faulty situation using a DTC controller. An open-phase fault condition is considered, and simulation results are provided to study the performance of the drive, comparing with the behavior during healthy state.

[1]  Federico Barrero,et al.  IGBT-Gating Failure Effect on a Fault-Tolerant Predictive Current-Controlled Five-Phase Induction Motor Drive , 2015, IEEE Transactions on Industrial Electronics.

[2]  D. Casadei,et al.  Control of Multiphase Induction Motors With an Odd Number of Phases Under Open-Circuit Phase Faults , 2012, IEEE Transactions on Power Electronics.

[3]  Sergio L. Toral Marín,et al.  A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines , 2009, IEEE Transactions on Industrial Electronics.

[4]  John E. Fletcher,et al.  Dual-Plane Vector Control of a Five-Phase Induction Machine for an Improved Flux Pattern , 2008, IEEE Transactions on Industrial Electronics.

[5]  J. Doval-Gandoy,et al.  Parameter Identification of Multiphase Induction Machines With Distributed Windings—Part 2: Time-Domain Techniques , 2012, IEEE Transactions on Energy Conversion.

[6]  Sergio L. Toral Marín,et al.  Variable-Speed Five-Phase Induction Motor Drive Based on Predictive Torque Control , 2013, IEEE Transactions on Industrial Electronics.

[7]  Wooi Ping Hew,et al.  FCS-MPC-Based Current Control of a Five-Phase Induction Motor and its Comparison with PI-PWM Control , 2014, IEEE Transactions on Industrial Electronics.

[8]  John E. Fletcher,et al.  Low-Speed Control Improvements for a Two-Level Five-Phase Inverter-Fed Induction Machine Using Classic Direct Torque Control , 2011, IEEE Transactions on Industrial Electronics.

[9]  Sergio L. Toral Marín,et al.  Speed Control of Five-Phase Induction Motors With Integrated Open-Phase Fault Operation Using Model-Based Predictive Current Control Techniques , 2014, IEEE Transactions on Industrial Electronics.

[10]  Manuel R. Arahal,et al.  Comparative Study of Predictive and Resonant Controllers in Fault-Tolerant Five-Phase Induction Motor Drives , 2016, IEEE Transactions on Industrial Electronics.

[11]  J. Doval-Gandoy,et al.  Parameter Identification of Multiphase Induction Machines With Distributed Windings—Part 1: Sinusoidal Excitation Methods , 2012, IEEE Transactions on Energy Conversion.

[12]  M. J. Duran,et al.  Reduction of Common-Mode Voltage in Five-Phase Induction Motor Drives Using Predictive Control Techniques , 2012, IEEE Transactions on Industry Applications.

[13]  Emil Levi,et al.  Advances in Converter Control and Innovative Exploitation of Additional Degrees of Freedom for Multiphase Machines , 2016, IEEE Transactions on Industrial Electronics.

[14]  Federico Barrero,et al.  Recent Advances in the Design, Modeling, and Control of Multiphase Machines—Part I , 2016, IEEE Transactions on Industrial Electronics.

[15]  John E. Fletcher,et al.  A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive , 2011, IEEE Transactions on Industrial Electronics.