The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration.

The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.

[1]  Gilbert V. Levin,et al.  Recent results from the Viking Labeled Release experiment on Mars , 1977 .

[2]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[3]  Bonnie J. Berdahl,et al.  The Viking Gas Exchange Experiment results from Chryse and Utopia surface samples , 1977 .

[4]  H. Klein The Viking biological experiments on Mars , 1978 .

[5]  H. Klein The Viking mission and the search for life on Mars , 1979 .

[6]  W. Giger,et al.  Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis , 1980 .

[7]  Ernest Merian,et al.  Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fates and biological effects , 1981 .

[8]  Zachary Evenhouse,et al.  Supercritical fluids. , 1982, Environmental science & technology.

[9]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[10]  S. Kent,et al.  Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. , 1992, Science.

[11]  S. Kent,et al.  Total Chemical Synthesis of a D-Enzyme: The Enantiomers of HIV-1 Protease Show Demonstration of Reciprocal Chiral Substrate Specificity , 1992 .

[12]  R. Zare,et al.  Ultrasensitive fluorescence detection of polycyclic aromatic hydrocarbons in capillary electrophoresis , 1993 .

[13]  J L Bada,et al.  Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct martian biota. , 1995, Icarus.

[14]  Investigating the surface chemistry of Mars. , 1995, Analytical chemistry.

[15]  M. Riekkola,et al.  Extraction of polychlorinated biphenyls with water under subcritical conditions , 1997 .

[16]  H P Klein,et al.  The Mars oxidant experiment (MOx) for Mars '96. , 1998, Planetary and space science.

[17]  Richard C. Quinn,et al.  A thermo-acoustic gas sensor array for photochemically critical species in the martian atmosphere , 1998 .

[18]  Hiroyuki Yoshida,et al.  Production of Organic Acids and Amino Acids from Fish Meat by Sub‐Critical Water Hydrolysis , 1999, Biotechnology progress.

[19]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[20]  L. N. Matveeva,et al.  The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Kminek,et al.  MOD: an organic detector for the future robotic exploration of Mars , 2000 .

[22]  M. Hecht,et al.  Evidence that the reactivity of the martian soil is due to superoxide ions. , 2000, Science.

[23]  G. Kminek,et al.  Detecting Pyrolysis Products from Bacteria on Mars , 2001 .

[24]  J L Bada,et al.  State-of-the-art instruments for detecting extraterrestrial life. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  N. Pace,et al.  The universal nature of biochemistry. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Blank,et al.  Astrophysical and astrochemical insights into the origin of life , 2002 .

[27]  M. Buehler,et al.  Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis , 2002 .

[28]  J. Bada,et al.  Direct isolation of purines and pyrimidines from nucleic acids using sublimation. , 2002, Analytical chemistry.

[29]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[30]  R. Benner,et al.  Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter , 2003 .

[31]  S. Hawthorne,et al.  Subcritical water extraction of antioxidant compounds from rosemary plants. , 2003, Journal of agricultural and food chemistry.

[32]  A. Skelley,et al.  Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. , 2003, Journal of chromatography. A.

[33]  J. Bada How life began on Earth: a status report , 2004 .

[34]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[35]  J. Bada,et al.  New Method for Estimating Bacterial Cell Abundances in Natural Samples by Use of Sublimation , 2004, Applied and Environmental Microbiology.

[36]  Pascale Ehrenfreund,et al.  Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument , 2005 .

[37]  A. Skelley,et al.  New strategies to detect life on Mars , 2005 .

[38]  M. Sephton,et al.  Recognizing life in the Solar System: guidance from meteoritic organic matter , 2005, International Journal of Astrobiology.

[39]  P. Pastore,et al.  Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. , 2005, Journal of chromatography. A.

[40]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[41]  William H. Grover,et al.  Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  The Enigma of the Martian Soil , 2005, Science.

[43]  Steven A Cummer,et al.  Oxidant enhancement in martian dust devils and storms: implications for life and habitability. , 2006, Astrobiology.

[44]  Richard A. Mathies,et al.  Sulfate minerals and organic compounds on Mars , 2006 .

[45]  Kenneth H. Nealson,et al.  Follow the Nitrogen , 2006, Science.

[46]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[47]  A. Skelley,et al.  Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection. , 2006, Astrobiology.

[48]  An atmospheric oxidation monitor based on in situ thin-film deposition , 2006 .

[49]  A. Skelley,et al.  Rapid on-column analysis of glucosamine and its mutarotation by microchip capillary electrophoresis. , 2006, Journal of chromatography. A.

[50]  Steen Rasmussen,et al.  Experimentally tracing the key steps in the origin of life: The aromatic world. , 2006, Astrobiology.

[51]  E. Ong,et al.  Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. , 2006, Journal of chromatography. A.

[52]  A. Skelley,et al.  Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument , 2007 .

[53]  Frank J. Grunthaner,et al.  Subcritical water extraction of amino acids from Atacama Desert soils , 2007 .

[54]  K. Kvenvolden Criteria for distinguishing biogenic and abiogenic amino acids — Preliminary considerations , 2007, Space life sciences.

[55]  F. Grunthaner,et al.  Subcritical water extractor for Mars analog soil analysis. , 2008, Astrobiology.