Single probe for real-time simultaneous monitoring of neurochemistry and direct-current electrocorticography.

[1]  G. Gerhardt,et al.  Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays. , 2015, Biosensors & bioelectronics.

[2]  Zoltán Fekete,et al.  Recent advances in silicon-based neural microelectrodes and microsystems: a review , 2015 .

[3]  Martin Lauritzen,et al.  Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. , 2015, Physiological reviews.

[4]  C A Cordeiro,et al.  In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. , 2015, Biosensors & bioelectronics.

[5]  G. Gerhardt,et al.  Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions , 2015, Experimental Neurology.

[6]  E. V. D. Wouden,et al.  Microfabricated solid-state ion-selective electrode probe for measuring potassium in the living rodent brain: Compatibility with DC-EEG recordings to study spreading depression , 2015 .

[7]  B. Fritsch,et al.  Polymer-based, flexible glutamate and lactate microsensors for in vivo applications. , 2014, Biosensors & bioelectronics.

[8]  Jens P Dreier,et al.  Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. , 2014, Brain : a journal of neurology.

[9]  A. Chase Traumatic brain injury: Spreading depolarization can cause secondary injury after TBI , 2014, Nature Reviews Neurology.

[10]  Xinxia Cai,et al.  A high sensitivity MEA probe for measuring real time rat brain glucose flux. , 2014, Biosensors & bioelectronics.

[11]  Giammario Calia,et al.  Simultaneous telemetric monitoring of brain glucose and lactate and motion in freely moving rats. , 2013, Analytical chemistry.

[12]  John P. Lowry,et al.  Simultaneous recording of hippocampal oxygen and glucose in real time using constant potential amperometry in the freely-moving rat , 2013, Journal of Neuroscience Methods.

[13]  Vanessa M. Tolosa,et al.  Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. , 2013, Biosensors & bioelectronics.

[14]  Michelle L Rogers,et al.  Continuous Online Microdialysis Using Microfluidic Sensors: Dynamic Neurometabolic Changes during Spreading Depolarization , 2013, ACS chemical neuroscience.

[15]  Xinxia Cai,et al.  A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro. , 2012, Biosensors & bioelectronics.

[16]  Harold G Monbouquette,et al.  Implantable Microprobe with Arrayed Microsensors for Combined Amperometric Monitoring of the Neurotransmitters, Glutamate and Dopamine. , 2012, Journal of electroanalytical chemistry.

[17]  Vanessa M. Tolosa,et al.  Transient Extracellular Glutamate Events in the Basolateral Amygdala Track Reward-Seeking Actions , 2012, The Journal of Neuroscience.

[18]  Tatiana Pasternak,et al.  Memory-Guided Sensory Comparisons in the Prefrontal Cortex: Contribution of Putative Pyramidal Cells and Interneurons , 2012, The Journal of Neuroscience.

[19]  L. Murray,et al.  Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study , 2011, The Lancet Neurology.

[20]  Erik Naylor,et al.  Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep. , 2011, Journal of electroanalytical chemistry.

[21]  Karen L. Smith,et al.  Ultrafast resorbing polymers for use as carriers for cortical neural probes. , 2011, Acta biomaterialia.

[22]  J. Dreier The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease , 2011, Nature Medicine.

[23]  M. Lauritzen,et al.  Clinical Relevance of Cortical Spreading Depression in Neurological Disorders: Migraine, Malignant Stroke, Subarachnoid and Intracranial Hemorrhage, and Traumatic Brain Injury , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  M. Jamal Deen,et al.  Microfabricated Reference Electrodes and their Biosensing Applications , 2010, Sensors.

[25]  F. Tortella,et al.  Spreading depolarizations and late secondary insults after traumatic brain injury. , 2009, Journal of neurotrauma.

[26]  Chong H Ahn,et al.  Toward real-time continuous brain glucose and oxygen monitoring with a smart catheter. , 2009, Biosensors & bioelectronics.

[27]  Chong H Ahn,et al.  A novel lab-on-a-tube for multimodality neuromonitoring of patients with traumatic brain injury (TBI). , 2009, Lab on a chip.

[28]  Martin Lauritzen,et al.  Persistent Increase in Oxygen Consumption and Impaired Neurovascular Coupling after Spreading Depression in Rat Neocortex , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  G. Tononi,et al.  Long-Term Homeostasis of Extracellular Glutamate in the Rat Cerebral Cortex across Sleep and Waking States , 2009, The Journal of Neuroscience.

[30]  Martyn G Boutelle,et al.  Persisting Depletion of Brain Glucose following Cortical Spreading Depression, despite Apparent Hyperaemia: Evidence for Risk of an Adverse Effect of Leão's Spreading Depression , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  D. Grandy,et al.  Decreased Dopamine D4 Receptor Expression Increases Extracellular Glutamate and Alters Its Regulation in Mouse Striatum , 2009, Neuropsychopharmacology.

[32]  Daryl R. Kipke,et al.  Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings , 2008, Journal of Neuroscience Methods.

[33]  Amir M. Sodagar,et al.  Microelectrodes, Microelectronics, and Implantable Neural Microsystems , 2008, Proceedings of the IEEE.

[34]  L. Medina-Ceja,et al.  Simultaneous glutamate and EEG activity measurements during seizures in rat hippocampal region with the use of an electrochemical biosensor , 2008, Journal of Neuroscience Methods.

[35]  T. Takano,et al.  Cortical spreading depression causes and coincides with tissue hypoxia , 2007, Nature Neuroscience.

[36]  Jungyoup Han,et al.  Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. , 2007, Biosensors & bioelectronics.

[37]  E. A. Lima,et al.  Thin-film IrOx pH microelectrode for microfluidic-based microsystems. , 2005, Biosensors & bioelectronics.

[38]  Nathan Jackson,et al.  Single neuronal recordings using surface micromachined polysilicon microelectrodes , 2005, Journal of Neuroscience Methods.

[39]  M. Lauritzen,et al.  Dynamic Changes in Brain Glucose and Lactate in Pericontusional Areas of the Human Cerebral Cortex, Monitored with Rapid Sampling On-Line Microdialysis: Relationship with Depolarisation-Like Events , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  Chang Auck Choi,et al.  An iridium oxide reference electrode for use in microfabricated biosensors and biochips. , 2004, Lab on a chip.

[41]  Suzanne S. Stensaas,et al.  Histopathological evaluation of materials implanted in the cerebral cortex , 1978, Acta Neuropathologica.

[42]  W. Cascio,et al.  Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia. , 1998, Analytical chemistry.

[43]  Serban F. Peteu,et al.  A Clark-type oxidase enzyme-based amperometric microbiosensor for sensing glucose, galactose, or choline , 1996 .

[44]  A. A. Leão,et al.  SPREADING DEPRESSION OF ACTIVITY IN THE CEREBRAL CORTEX , 1944 .