Density Evolution for Deterministic Generalized Product Codes on the Binary Erasure Channel at High Rates

Generalized product codes (GPCs) are extensions of product codes (PCs), where code symbols are protected by two component codes but not necessarily arranged in a rectangular array. We consider a deterministic construction of GPCs (as opposed to randomized code ensembles) and analyze the asymptotic performance over the binary erasure channel under iterative decoding. Our code construction encompasses several classes of GPCs previously proposed in the literature, such as irregular PCs, blockwise braided codes, and staircase codes. It is assumed that the component codes can correct a fixed number of erasures and that the length of each component code tends to infinity. We show that this setup is equivalent to studying the behavior of a peeling algorithm applied to a sparse inhomogeneous random graph. Using a convergence result for these graphs, we derive the density evolution equations that characterize the asymptotic decoding performance. As an application, we discuss the design of irregular GPCs, employing a mixture of component codes with different erasure-correcting capabilities.

[1]  J. Justesen,et al.  Analysis of Iterated Hard Decision Decoding of Product Codes with Reed-Solomon Component Codes , 2007, 2007 IEEE Information Theory Workshop.

[2]  Alexandre Graell i Amat,et al.  Density evolution for deterministic generalized product codes with higher-order modulation , 2016, 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[3]  Omid Etesami,et al.  Irregular product codes , 2012, 2012 IEEE Information Theory Workshop.

[4]  Henry D. Pfister,et al.  Symmetric product codes , 2015, 2015 Information Theory and Applications Workshop (ITA).

[5]  Nenad Miladinovic,et al.  Generalized LDPC codes and generalized stopping sets , 2008, IEEE Transactions on Communications.

[6]  Paul H. Siegel,et al.  On the asymptotic performance of iterative decoders for product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  Lutz Warnke,et al.  On the Method of Typical Bounded Differences , 2012, Combinatorics, Probability and Computing.

[8]  Béla Bollobás,et al.  Random Graphs , 1985 .

[9]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[10]  Gerhard Fettweis,et al.  Exact erasure channel density evolution for protograph-based generalized LDPC codes , 2009, 2009 IEEE International Symposium on Information Theory.

[11]  Andrea Montanari,et al.  Statistical Mechanics and Algorithms on Sparse and Random Graphs , 2014 .

[12]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[13]  Alexandre Graell i Amat,et al.  On parameter optimization for staircase codes , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[14]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.

[15]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[16]  Andrea Montanari,et al.  Further results on finite-length scaling for iteratively decoded LDPC ensembles , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[18]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[19]  Michael Mitzenmacher,et al.  Analysis of random processes via And-Or tree evaluation , 1998, SODA '98.

[20]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[21]  Andrea Montanari,et al.  Finite-Length Scaling for Iteratively Decoded LDPC Ensembles , 2004, IEEE Transactions on Information Theory.

[22]  Alexandre Graell i Amat,et al.  Deterministic and ensemble-based spatially-coupled product codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[23]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[24]  Frank R. Kschischang,et al.  Spatially-coupled split-component codes with bounded-distance component decoding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[25]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[26]  Jørn Justesen,et al.  Error correcting coding for OTN , 2010, IEEE Communications Magazine.

[27]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[28]  Michael Scholten,et al.  Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[29]  J. Rosenthal A First Look at Rigorous Probability Theory , 2000 .

[30]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[31]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[32]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[33]  Henry D. Pfister,et al.  A Simple Proof of Maxwell Saturation for Coupled Scalar Recursions , 2013, IEEE Transactions on Information Theory.

[34]  Oliver Riordan,et al.  The k-Core and Branching Processes , 2005, Combinatorics, Probability and Computing.

[35]  Frank R. Kschischang,et al.  Staircase Codes With 6% to 33% Overhead , 2014, Journal of Lightwave Technology.

[36]  Béla Bollobás,et al.  Random Graphs and Branching Processes , 2008 .

[37]  Henry D. Pfister,et al.  Approaching capacity at high rates with iterative hard-decision decoding , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[38]  Henry D. Pfister,et al.  Density evolution and error floor analysis for staircase and braided codes , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[39]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[40]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Amin Shokrollahi,et al.  New Sequences of Linear Time Erasure Codes Approaching the Channel Capacity , 1999, AAECC.

[42]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[43]  Gerhard Fettweis,et al.  On the thresholds of generalized LDPC convolutional codes based on protographs , 2010, 2010 IEEE International Symposium on Information Theory.

[44]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[45]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[46]  Norman Abramson,et al.  Cascade Decoding of Cyclic Product Codes , 1968 .

[47]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[48]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .

[49]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[50]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[51]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[52]  Jørn Justesen,et al.  Performance of Product Codes and Related Structures with Iterated Decoding , 2011, IEEE Transactions on Communications.

[53]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[54]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[55]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[56]  Wei Yu,et al.  Design of irregular LDPC codes with optimized performance-complexity tradeoff , 2010, IEEE Transactions on Communications.

[57]  Benjamin Peter Smith,et al.  Error-correcting Codes for Fibre-optic Communication Systems , 2012 .

[58]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[59]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[60]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks. Vol. II , 2014 .

[61]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[62]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .

[63]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[64]  Henry D. Pfister,et al.  Iterative hard-decision decoding of braided BCH codes for high-speed optical communication , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[65]  A. Dembo,et al.  Ising models on locally tree-like graphs , 2008, 0804.4726.

[66]  Masao Kasahara,et al.  Modified product codes , 1984, IEEE Trans. Inf. Theory.

[67]  Svante Janson,et al.  Asymptotic normality of the k-core in random graphs , 2008 .