Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean

Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to ∼3% of the annual new marine biological production, ∼0.3 petagram of carbon per year. This input could account for the production of up to ∼1.6 teragrams of nitrous oxide (N2O) per year. Although ∼10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

[1]  J. Trotignon Short electric-field antennae as diagnostic tools for space plasmas , 2010, 2010 International Conference on Electromagnetics in Advanced Applications.

[2]  W. Landman Climate change 2007: the physical science basis , 2010 .

[3]  J. Galloway,et al.  Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions , 2008, Science.

[4]  J. Lamarque,et al.  Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system , 2007, Proceedings of the National Academy of Sciences.

[5]  P. Hari,et al.  The human footprint in the carbon cycle of temperate and boreal forests , 2007, Nature.

[6]  C. Zender,et al.  Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry , 2007 .

[7]  M. Saier,et al.  Climate Change, 2007 , 2007 .

[8]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[9]  U. Riebesell,et al.  Enhanced biological carbon consumption in a high CO2 ocean , 2006, Nature.

[10]  R. Schlitzer Assimilation of Radiocarbon and Chlorofluorocarbon Data to Constrain Deep and Bottom Water Transports in the World Ocean , 2007 .

[11]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[12]  C. Duarte,et al.  Aerosol inputs enhance new production in the subtropical northeast Atlantic , 2006 .

[13]  M. Uematsu,et al.  Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific , 2006 .

[14]  J A Harrison,et al.  Denitrification across landscapes and waterscapes: a synthesis. , 2006, Ecological applications : a publication of the Ecological Society of America.

[15]  J. Lamarque,et al.  Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation , 2006 .

[16]  T. Jickells The role of air-sea exchange in the marine nitrogen cycle , 2006 .

[17]  Michele Scardi,et al.  A comparison of global estimates of marine primary production from ocean color , 2006 .

[18]  J. Waterbury,et al.  Phosphonate utilization by the globally important marine diazotroph Trichodesmium , 2006, Nature.

[19]  K. Lindsay,et al.  Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition , 2006 .

[20]  Hermann W. Bange,et al.  New Directions: The importance of oceanic nitrous oxide emissions , 2006 .

[21]  J. Montoya,et al.  INTERACTIONS BETWEEN NITRATE UPTAKE AND NITROGEN FIXATION IN CONTINUOUS CULTURES OF THE MARINE DIAZOTROPH TRICHODESMIUM (CYANOBACTERIA) 1 , 2005 .

[22]  John A. Harrison,et al.  Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application , 2005 .

[23]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[24]  C. Mahaffey The conundrum of marine N2 fixation , 2005 .

[25]  Matthew M. Mills,et al.  Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic , 2004, Nature.

[26]  M. Brzezinski,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2004, Nature.

[27]  T. Jickells,et al.  Atmospheric deposition of nutrients to the Atlantic Ocean , 2003 .

[28]  R. Duce,et al.  Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia , 2003 .

[29]  R. Slater,et al.  Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production , 2003 .

[30]  J. Cape,et al.  Organic nitrogen deposition on land and coastal environments: a review of methods and data , 2003 .

[31]  A. Oschlies Model-derived estimates of new production: New results point towards lower values , 2001 .

[32]  Walker O. Smith,et al.  Temperature effects on export production in the open ocean , 2000 .

[33]  R. Ganeshram,et al.  Glacial-interglacial variability in denitrification in the World's Oceans: Causes and consequences , 2000 .

[34]  James N. Galloway,et al.  Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed , 1996 .

[35]  James N. Galloway,et al.  Atmospheric deposition of nutrients to the North Atlantic Basin. , 1996 .

[36]  H. Ducklow Ocean biogeochemical fluxes: New production and export of organic matter from the upper ocean , 1995 .

[37]  A. Knap,et al.  Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms , 1993 .

[38]  B. Hicks,et al.  The atmospheric input of trace species to the world ocean , 1991 .

[39]  W. Broecker Keeping global change honest , 1991 .

[40]  H. Paerl Enhancement of marine primary production by nitrogen-enriched acid rain , 1985, Nature.

[41]  Paleoceanography. , 2021, Science.

[42]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[43]  J. Goering,et al.  UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY1 , 1967 .