Weaker convergent results of the generalized Newton method for the generalized absolute value equations
暂无分享,去创建一个
[1] Zhong-Zhi Bai,et al. Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..
[2] O. Mangasarian,et al. Absolute value equations , 2006 .
[3] Changfeng Ma,et al. SOR-like iteration method for solving absolute value equations , 2017, Appl. Math. Comput..
[4] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[5] Mei-Qun Jiang,et al. A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..
[6] Davod Khojasteh Salkuyeh,et al. The Picard–HSS iteration method for absolute value equations , 2014, Optim. Lett..
[7] Aixiang Wang,et al. Interval algorithm for absolute value equations , 2011 .
[8] Olvi L. Mangasarian,et al. Absolute value programming , 2007, Comput. Optim. Appl..
[9] Qiong Zhang,et al. A generalized Newton method for absolute value equations associated with second order cones , 2011, J. Comput. Appl. Math..
[10] Chao Zhang,et al. Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations , 2009 .
[11] Olvi L. Mangasarian,et al. A generalized Newton method for absolute value equations , 2009, Optim. Lett..
[12] Jiri Rohn,et al. A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.
[13] Cui-Xia Li,et al. A Preconditioned AOR Iterative Method for the Absolute Value Equations , 2017 .
[14] Saeed Ketabchi,et al. An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side , 2012, Comput. Math. Appl..