Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers

Summary Pyramidal tract neurons (PTs) represent the major output cell type of the mammalian neocortex. Here, we report the origins of the PTs’ ability to respond to a broad range of stimuli with onset latencies that rival or even precede those of their intracortical input neurons. We find that neurons with extensive horizontally projecting axons cluster around the deep-layer terminal fields of primary thalamocortical axons. The strategic location of these corticocortical neurons results in high convergence of thalamocortical inputs, which drive reliable sensory-evoked responses that precede those in other excitatory cell types. The resultant fast and horizontal stream of excitation provides PTs throughout the cortical area with input that acts to amplify additional inputs from thalamocortical and other intracortical populations. The fast onsets and broadly tuned characteristics of PT responses hence reflect a gating mechanism in the deep layers, which assures that sensory-evoked input can be reliably transformed into cortical output.

[1]  Hee-Sup Shin,et al.  LFP-guided targeting of a cortical barrel column for in vivo two-photon calcium imaging , 2015, Scientific Reports.

[2]  Jyh-Jang Sun,et al.  Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. , 2015, Cerebral cortex.

[3]  M. Ito Simultaneous visualization of cortical barrels and horseradish peroxidase‐injected layer 5b vibrissa neurones in the rat. , 1992, The Journal of physiology.

[4]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[5]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[6]  Hanno S Meyer,et al.  Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex , 2018, Cerebral cortex.

[7]  Ad Aertsen,et al.  Physiology and Impact of Horizontal Connections in Rat Neocortex. , 2015, Cerebral cortex.

[8]  Randy M Bruno,et al.  Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology. , 2007, Journal of biomedical optics.

[9]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[10]  Marcel Oberlaender,et al.  Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons , 2017, Nature Communications.

[11]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[12]  H. Gong,et al.  Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field , 2017, Scientific Reports.

[13]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[14]  K. Fox,et al.  Origins of cortical layer V surround receptive fields in the rat barrel cortex. , 2010, Journal of neurophysiology.

[15]  Arno C. Schmitt,et al.  Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites , 2015, Proceedings of the National Academy of Sciences.

[16]  Shay Ohayon,et al.  Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology , 2017, Journal of neural engineering.

[17]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[18]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[19]  Ilan Lampl,et al.  Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities , 2016, Nature Communications.

[20]  Alison L. Barth,et al.  POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex , 2018, Cerebral cortex.

[21]  Cyrille Rossant,et al.  Spike sorting for large, dense electrode arrays , 2015 .

[22]  Eugene W. Myers,et al.  Automated Tracking of Whiskers in Videos of Head Fixed Rodents , 2012, PLoS Comput. Biol..

[23]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[24]  Rajeevan T Narayanan,et al.  Juxtasomal biocytin labeling to study the structure-function relationship of individual cortical neurons. , 2014, Journal of visualized experiments : JoVE.

[25]  Hans-Christian Hege,et al.  The Filament Editor: An Interactive Software Environment for Visualization, Proof-Editing and Analysis of 3D Neuron Morphology , 2013, Neuroinformatics.

[26]  D. Simons,et al.  Motor modulation of afferent somatosensory circuits , 2008, Nature Neuroscience.

[27]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[28]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[29]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[30]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[31]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[32]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[33]  W. Fries,et al.  Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5 , 2004, Experimental Brain Research.

[34]  Kevin Fox,et al.  The Origin of Cortical Surround Receptive Fields Studied in the Barrel Cortex , 2003, The Journal of Neuroscience.

[35]  Farran Briggs,et al.  Organizing Principles of Cortical Layer 6 , 2009, Front. Neural Circuits.

[36]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[37]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[38]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[39]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[40]  D. Simons,et al.  Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae , 1988, Brain Research.

[41]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[42]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[43]  M P Stryker,et al.  Rapid remodeling of axonal arbors in the visual cortex. , 1993, Science.

[44]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[45]  Bert Sakmann,et al.  Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole‐cell voltage recording and morphological reconstruction , 2002, The Journal of physiology.

[46]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[47]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[48]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[49]  Mark T. Harnett,et al.  Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior , 2018, Nature Neuroscience.

[50]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[52]  H. S. Meyer,et al.  Cellular organization of cortical barrel columns is whisker-specific , 2013, Proceedings of the National Academy of Sciences.

[53]  Randy M Bruno,et al.  The Role of Thalamic Inputs in Surround Receptive Fields of Barrel Neurons , 2005, The Journal of Neuroscience.

[54]  Z. Kisvárday,et al.  Axon topography of layer 6 spiny cells to orientation map in the primary visual cortex of the cat (area 18) , 2016, Brain Structure and Function.

[55]  Henry Markram,et al.  Preserving axosomatic spiking features despite diverse dendritic morphology. , 2013, Journal of neurophysiology.

[56]  F. Meye,et al.  Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse , 2016, Nature Neuroscience.

[57]  K. Rockland,et al.  Intrinsic collaterals of layer 6 meynert cells and functional columns in primate v1 , 2003, Neuroscience.

[58]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[59]  Moritz Helmstaedter,et al.  3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology , 2012, PLoS Comput. Biol..

[60]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[61]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[62]  Shane R. Crandall,et al.  Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs. , 2017, Cell reports.

[63]  Kenneth D Harris,et al.  Spike sorting for large, dense electrode arrays , 2015, Nature Neuroscience.

[64]  Idan Segev,et al.  Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits , 2014, Cerebral cortex.

[65]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[66]  Hans-Christian Hege,et al.  Generation of dense statistical connectomes from sparse morphological data , 2014, Front. Neuroanat..

[67]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  T. Tsumoto,et al.  Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Margrie,et al.  Visual Experience Regulates the Intrinsic Excitability of Visual Cortical Neurons to Maintain Sensory Function , 2018, bioRxiv.

[70]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[71]  Liam Paninski,et al.  Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input , 2014, Nature Neuroscience.

[72]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[73]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[74]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[75]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Moritz Helmstaedter,et al.  A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity , 2013, Cerebral cortex.

[77]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[78]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[79]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[80]  S. Sherman,et al.  Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse , 2011, Proceedings of the National Academy of Sciences.

[81]  Randy M. Bruno,et al.  Comparative Strength and Dendritic Organization of Thalamocortical and Corticocortical Synapses onto Excitatory Layer 4 Neurons , 2014, The Journal of Neuroscience.

[82]  H. Markram,et al.  Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron , 2015, Front. Cell. Neurosci..

[83]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[84]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[85]  O. Ohana,et al.  Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. , 2008, Journal of neurophysiology.

[86]  Marcel Oberlaender,et al.  Sensory Experience Restructures Thalamocortical Axons during Adulthood , 2012, Neuron.