Flexible solar cells and modules

Flexible photovoltaic (PV) modules enable a wealth of applications in architecture, clothing integration, or other mobile power supplies. Moreover, a simple and cost-effective roll-to-roll manufacturing of thin film PV modules could in the long run compete with large area glass plate processing for the PV power market. Based upon the optimisation of amorphous, nano and protocrystalline silicon thin films, flexible solar cells grown at temperatures between 40°C and 110°C are described with power conversion efficiency up to 5%. A novel in situ series connection technique establishes monolithic integration of such cells into a PV module by locally masking thin film deposition, without any laser patterning or breaking of the continuous production flow. The first flexible modules from a non-optimised, single junction n-i-p structure demonstrate the function of the in situ series connection, and exhibit a total area efficiency of 3%, resulting from an average single cell efficiency of 3.3% and a total interconnection loss of only 15% over the 40 cm2 module area.

[1]  Hans Zogg,et al.  Flexible CdTe solar cells on polymer films , 2001 .

[2]  Kosuke Kurokawa,et al.  3rd World Conference on Photovoltaic Energy Conversion , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[3]  F. Finger,et al.  Structure and growth of hydrogenated microcrystalline silicon : investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies , 1997 .

[4]  F. R. Jeffrey,et al.  Fabrication of Amorphous Silicon Devices on Plastic Substrates , 1985 .

[5]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[6]  R. Chittick,et al.  The Preparation and Properties of Amorphous Silicon , 1969 .

[7]  M. Yano,et al.  Roll-to-roll preparation of a hydrogenated amorphous silicon solar cell on a polymer film substrate , 1987 .

[8]  Markus Schubert,et al.  Low Temperature Deposition of Amorphous Silicon Based Solar Cells , 1999 .

[9]  Michael Grätzel,et al.  Molecular engineering on semiconductor surfaces: design, synthesis, and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells , 2003 .

[10]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[11]  M. Schubert,et al.  Highly Conductive Microcrystalline Silicon Layers for Tunnel Junctions in Stacked Amorphous Silicon based Solar Cells. , 1991 .

[12]  J. J. Hanak Monolithic solar cell panel of amorphous silicon , 1979 .

[13]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[14]  Diego Fischer,et al.  Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique , 2001 .

[15]  R. Schropp,et al.  Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells , 2009 .

[16]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[17]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[18]  Christoph J. Brabec,et al.  Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence , 2007 .

[19]  Robert W. Collins,et al.  EVOLUTIONARY PHASE DIAGRAMS FOR PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF SILICON THIN FILMS FROM HYDROGEN-DILUTED SILANE , 1999 .

[20]  G. Bruno,et al.  A study of growth mechanism of microcrystalline thin silicon films deposited at low temperature by SiF4-H2-He PECVD , 2004 .

[21]  M. Heintze,et al.  VHF plasma deposition for thin‐film solar cells , 1993 .

[22]  V. Chu,et al.  Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition , 1999 .

[23]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[24]  M. Vaněček,et al.  How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H , 1991 .

[25]  Markus Schubert,et al.  Silicon thin film solar cells deposited under 80°C , 2001 .

[26]  J. Loferski The first forty years: A brief history of the modern photovoltaic age , 1993 .

[27]  M. Schubert,et al.  150-mm layer transfer for monocrystalline silicon solar cells , 2006 .

[28]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[29]  Andrew G. Glen,et al.  APPL , 2001 .

[30]  Kamala Rajan,et al.  Thin film encapsulated flexible organic electroluminescent displays , 2003 .

[31]  João Pedro Conde,et al.  Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition , 2003 .

[32]  Markus Schubert,et al.  Solar Cell Performance Under Different Illumination Conditions , 2001 .

[33]  Microscopic Aspects Of Charge Transport In Hydrogenated Microcrystalline Silicon , 2001 .

[34]  S. Hamma,et al.  Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications , 2001 .

[35]  Jürgen H. Werner,et al.  Flexible solar cells for clothing , 2006 .

[36]  Subhendu Guha,et al.  High quality amorphous silicon materials and cells grown with hydrogen dilution , 2003 .

[37]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[38]  M. Schubert,et al.  Flexible Protocrystalline Silicon Solar Cells with Amorphous Buffer Layer , 2006 .

[39]  P. Cabarrocas DEPOSITION OF INTRINSIC, PHOSPHORUS-DOPED, AND BORON-DOPED HYDROGENATED AMORPHOUS SILICON FILMS AT 50 C , 1994 .

[40]  M. Powalla,et al.  Approaches to flexible CIGS thin-film solar cells , 2005 .

[41]  Alaa Ghaith,et al.  Amorphous-silicon field-effect device and possible application , 1979 .

[42]  Nicolas Wyrsch,et al.  Material and solar cell research in microcrystalline silicon , 2003 .

[43]  M. Schubert,et al.  Protocrystalline Growth of Silicon below 80°C , 2000 .

[44]  C. Ballif,et al.  Development of micromorph tandem solar cells on flexible low cost plastic substrates , 2009 .

[45]  R. Lathe Phd by thesis , 1988, Nature.

[46]  Markus Schubert,et al.  Low temperature silicon deposition for large area sensors and solar cells , 1999 .

[47]  Flexible and light weight substrates for Cu(In,Ga)Se/sub 2/ solar cells and modules , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[48]  Wolfram Witte,et al.  Flexible, Monolithically Integrated Cu(In,Ga)Se 2 Thin-Film Solar Modules , 2005 .

[49]  Reinhard Carius,et al.  Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth , 1998 .

[50]  Markus Schubert,et al.  Low-temperature deposition of amorphous silicon solar cells , 2001 .

[51]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[52]  D. L. Williamson,et al.  Nanostructure of a-Si:H and Related Materials by Small-Angle X-Ray Scattering , 1995 .

[53]  Ralf B. Bergmann,et al.  Quasi-monocrystalline silicon for thin-film devices , 1999 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.