Elastic properties of cubic and rhombohedralBiFeO3from first-principles calculations

First-principles elastic constants cij’s of BiFeO3 with cubic nonmagnetic NM /ferromagnetic FM structures and rhombohedral antiferromagnetic AFM structure have been calculated within the generalized gradient approximation GGA and the GGA+U approach. In addition, the elastic properties of polycrystalline aggregates including bulk modulus and shear modulus are also determined and compared with experiments. It is found that the predicted cij’s decrease with increasing volume or decreasing pressure except for the c14 of the rhombohedral AFM phase. The cubic NM and FM phases are predicted to be harder than the rhombohedral AFM one, indicated by their smaller equilibrium volumes and larger bulk moduli. Additionally, the cubic FM phase is found nearly isotropy by GGA and GGA+U with Ueff=6 eV , and the cubic NM phase is mechanical unstable at high temperatures. The presently predicted cij’s of BiFeO3 provide helpful guidance for future measurements, and make the stress estimation and elastic energy calculation in BiFeO3 thin films possible.

[1]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[2]  P. Fischer,et al.  Temperature dependence of the crystal and magnetic structures of BiFeO3 , 1980 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[5]  M. Fejer,et al.  Nonlinear elasticity in proper ferroelastics , 1983 .

[6]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[7]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[8]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[9]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[10]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[11]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[12]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[13]  Robert W. Cahn,et al.  Materials science: Melting from within , 2001, Nature.

[14]  T. Anderson,et al.  Calculated strain energy of hexagonal epitaxial thin films , 2002 .

[15]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[16]  K. H. Andersen,et al.  Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese , 2002 .

[17]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[18]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[19]  Nicola A. Spaldin,et al.  First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3 : Structure, polarization, and magnetic ordering temperature , 2005, cond-mat/0508362.

[20]  Stefano de Gironcoli,et al.  Taming multiple valency with density functionals: A case study of defective ceria , 2005 .

[21]  H. Fjellvåg,et al.  Theoretical investigation of magnetoelectric behavior in BiFeO3 , 2006 .

[22]  F. Gao,et al.  Preparation and photoabsorption characterization of BiFeO3 nanowires , 2006 .

[23]  Shun-Li Shang,et al.  First-principles elastic constants of α- and θ-Al2O3 , 2007 .

[24]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[25]  Zhen Liu,et al.  Elastic anisotropy of γ'-Fe4N and elastic grain interaction in γ'-Fe4N1-y layers on α-Fe: first-principles calculations and diffraction stress measurements , 2007 .

[26]  T. P. Gujar,et al.  Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method , 2007 .

[27]  Zi-kui Liu,et al.  Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films , 2007 .

[28]  I. Kornev,et al.  Finite-temperature properties of multiferroic BiFeO3. , 2007, Physical review letters.

[29]  Sergey Ovchinnikov,et al.  Another mechanism for the insulator-metal transition observed in Mott insulators , 2008 .

[30]  G. P. Srivastava,et al.  Electronic structure and lattice dynamical properties of different tetragonal phases ofBiFeO3 , 2008 .

[31]  G. Ceder,et al.  Structural, magnetic, and optical properties of BiFeO 3 and Bi 2 FeMnO 6 epitaxial thin films: An experimental and first-principles study , 2008 .

[32]  J. Íñiguez,et al.  Pressure-induced structural, electronic, and magnetic effects in BiFeO 3 , 2008, 0810.0856.

[33]  Philippe Ghosez,et al.  Hybrid functional study of prototypical multiferroic bismuth ferrite , 2009 .