Seawater ageing of flax/poly(lactic acid) biocomposites

Natural fibre reinforced biopolymer composites, or biocomposites, are an alternative to the glass fibre reinforced thermoset composites widely used today in marine applications. Biocomposites offer good mechanical properties and total biodegradability, but if they are to be adopted for marine structures their durability in a seawater environment must be demonstrated. In the present study unreinforced PLLA (Poly(l-Lactic acid)), injected and film stacked flax composites with the same PLLA matrix have been examined. All the samples were aged in natural seawater at different temperatures in order to accelerate hygrothermal ageing. Changes to physico-chemical and mechanical behaviour have been followed by weight measurements, thermal and gel permeation chromatography (GPC) analyses, and tensile testing, completed by acoustic emission recording and scanning electron microscopy (SEM) examination. The matrix tensile stiffness is hardly affected by seawater at temperatures to 40 °C but the composite loses stiffness and strength. Fibre/matrix interface weakening is the main damage mechanism induced by wet ageing, but both matrix and fibre cracks also appear at longer periods.

[1]  Y. Grohens,et al.  Etat de l'art sur les matériaux composites biodégradables , 2004 .

[2]  G. Unnikrishnan,et al.  A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques , 2007 .

[3]  Sabu Thomas,et al.  Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites , 2002 .

[4]  M. Hamstad A review: Acoustic emission, a tool for composite-materials studies , 1986 .

[5]  L. Ferry,et al.  Study of hygrothermal ageing of glass fibre reinforced PET composites , 2005 .

[6]  H. Tsuji,et al.  Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater , 2002 .

[7]  J. Karger‐Kocsis,et al.  Tensile fracture and failure behavior of technical flax fibers , 2003 .

[8]  Alessandro Pegoretti,et al.  Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene terephthalate) and its short glass fibre composites , 2004 .

[9]  J. L. Willett,et al.  Mechanical and Thermal Properties of Starch-Filled Poly(D,L-lactic acid)/Poly(hydroxy ester ether) Biodegradable Blends , 2003 .

[10]  Seung‐Hwan Lee,et al.  Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent , 2006 .

[11]  Y. Perrot Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navale de plaisance - Cas des résines polyester limitant les émissions de styrène , 2006 .

[12]  Sabu Thomas,et al.  Effect of fibre surface modification on water-sorption characteristics of oil palm fibres , 2003 .

[13]  S. Ray,et al.  Crystallization Behavior and Morphology of Biodegradable Polylactide/ Layered Silicate Nanocomposite , 2003 .

[14]  T. Peijs,et al.  Environmental Durability of Flax Fibres and their Composites based on Polypropylene Matrix , 2000 .

[15]  P. Bonniau,et al.  A Comparative Study of Water Absorption Theories Applied to Glass Epoxy Composites , 1981 .

[16]  Sadok Roudesli,et al.  Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties , 2007 .

[17]  S. Huguet,et al.  Application de classificateurs aux données d'émission acoustique : identification de la signature acoustique des mécanismes d'endommagement dans les composites à matrice polymère , 2002 .

[18]  A. Pegoretti,et al.  Recycled poly(ethylene terephthalate) and its short glass fibres composites: effects of hygrothermal aging on the thermo-mechanical behaviour , 2004 .

[19]  A. Retegi,et al.  Effects of hygrothermal ageing on mechanical properties of flax pulps and their polypropylene matrix composites , 2006 .

[20]  P. Davies,et al.  Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites , 2008 .

[21]  J. Karger‐Kocsis,et al.  Tensile Fracture and Failure Behavior of Thermoplastic Starch with Unidirectional and Cross‐Ply Flax Fiber Reinforcements , 2003 .

[22]  Robert K.Y. Li,et al.  Moisture absorption studies of sisal fibre reinforced polypropylene composites , 2007 .

[23]  R. Gaertner,et al.  Influence of hydrolytic ageing on the acoustic emission signatures of damage mechanisms occurring during tensile tests on a polyester composite: Application of a Kohonen’s map , 2006 .

[24]  Mohammad K. Hassan,et al.  Hydrolytic degradation of poly(d,l-lactide) as a function of end group: Carboxylic acid vs. hydroxyl , 2006 .

[25]  K. Zhu,et al.  Poly-DL-lactic acid: polyethylene glycol block copolymers. The influence of polyethylene glycol on the degradation of poly-DL-lactic acid. , 1994, Journal of biomaterials science. Polymer edition.

[26]  J. Verdu,et al.  Osmotic cracking nucleation in hydrothermal-aged polyester matrix , 2000 .

[27]  Y. Kojima,et al.  Properties of cell wall constituents in relation to longitudinal elasticity of wood , 2002, Wood Science and Technology.

[28]  V. Álvarez,et al.  Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer–sisal fiber biocomposites , 2004 .

[29]  A. Bessadok,et al.  Kinetics of water sorption in flax and PET fibers , 2007 .

[30]  S. Ray,et al.  New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology , 2003 .

[31]  J. Verdu,et al.  Lifetime prediction in the hydrolytic ageing of polyesters , 1995 .

[32]  Christophe Baley,et al.  Application of Interlaminar Tests to Marine Composites. A Literature Review , 2004 .

[33]  M.O.W. Richardson,et al.  The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites , 2007 .

[34]  J. Bréard,et al.  Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites , 2007 .

[35]  A. Copinet,et al.  Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media , 2002 .

[36]  Zhongyi Zhang,et al.  Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites , 2007 .

[37]  Edwin Bodros,et al.  Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications , 2007 .

[38]  U. Ishiaku,et al.  Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites , 2005 .

[39]  A. Hiltner,et al.  Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity , 2003 .

[40]  J. P. Lucas,et al.  The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites , 1995 .

[41]  Kin Liao,et al.  Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites , 2003 .