Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs

[1]  J. Ao,et al.  Influence on curvature induced stress to the flatband voltage and interface density of 4H-SiC MOS structure , 2019, Journal of Crystal Growth.

[2]  J. Urresti,et al.  Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2 / Al2O3 Gate Stack , 2018, IEEE Electron Device Letters.

[3]  S. Dhar,et al.  4H-SiC MOSFETs With Borosilicate Glass Gate Dielectric and Antimony Counter-Doping , 2017, IEEE Electron Device Letters.

[4]  T. Kimoto,et al.  Interface properties of NO-annealed 4H-SiC (0001), ( 11 2 ¯ 0), and ( 1 1 ¯ 00) MOS structures with heavily doped p-bodies , 2017 .

[5]  K. Kita,et al.  Difference of near-interface strain in SiO2 between thermal oxides grown on 4H-SiC by dry-O2 oxidation and H2O oxidation characterized by infrared spectroscopy , 2017 .

[6]  T. Kimoto,et al.  Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature , 2017 .

[7]  Heiji Watanabe,et al.  Ultrahigh-temperature rapid thermal oxidation of 4H-SiC(0001) surfaces and oxidation temperature dependence of SiO2/SiC interface properties , 2016 .

[8]  S. Dhar,et al.  Effects of antimony (Sb) on electron trapping near SiO2/4H-SiC interfaces , 2016 .

[9]  Veena Misra,et al.  Electrical Characteristics of SiO2 Deposited by Atomic Layer Deposition on 4H–SiC After Nitrous Oxide Anneal , 2016, IEEE Transactions on Electron Devices.

[10]  P. Mawby,et al.  High Temperature Nitridation of 4H-SiC MOSFETs , 2016 .

[11]  S. Dhar,et al.  Phospho-silicate glass gated 4H-SiC metal-oxide-semiconductor devices: Phosphorus concentration dependence , 2016 .

[12]  T. Fuyuki,et al.  Threshold Voltage Instability in 4H-SiC MOSFETs With Phosphorus-Doped and Nitrided Gate Oxides , 2015, IEEE Transactions on Electron Devices.

[13]  T. Kimoto,et al.  Interface Properties of 4H-SiC ( $11\bar {2}0$ ) and ( $1\bar {1}00$ ) MOS Structures Annealed in NO , 2015, IEEE Transactions on Electron Devices.

[14]  Hiroshi Yano,et al.  Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation , 2014, IEEE Electron Device Letters.

[15]  Hajime Okumura,et al.  Effects of interface state density on 4H-SiC n-channel field-effect mobility , 2014 .

[16]  Joshua A. Taillon,et al.  Systematic structural and chemical characterization of the transition layer at the interface of NO-annealed 4H-SiC/SiO2 metal-oxide-semiconductor field-effect transistors , 2013 .

[17]  F. Giannazzo,et al.  Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon post-oxidation-annealing in N2O and POCl3 , 2012 .

[18]  Jong-Ho Lee,et al.  Comparison of thermal and atomic-layer-deposited oxides on 4H-SiC after post-oxidation-annealing in nitric oxide , 2012 .

[19]  F. Giannazzo,et al.  Limiting mechanism of inversion channel mobility in Al-implanted lateral 4H-SiC metal-oxide semiconductor field-effect transistors , 2011 .

[20]  A. F. Basile,et al.  Electron trapping in 4H-SiC MOS capacitors fabricated by pre-oxidation nitrogen implantation , 2011 .

[21]  S. Dhar,et al.  Inversion layer carrier concentration and mobility in 4H–SiC metal-oxide-semiconductor field-effect transistors , 2010 .

[22]  Sei-Hyung Ryu,et al.  A Study on Pre-Oxidation Nitrogen Implantation for the Improvement of Channel Mobility in 4H-SiC MOSFETs , 2010, IEEE Transactions on Electron Devices.

[23]  P. Godignon,et al.  A study of the influence of the annealing processes and interfaces with deposited SiO2 from tetra-ethoxy-silane for reducing the thermal budget in the gate definition of 4H–SiC devices , 2006 .