Self‐organization in raised bog patterning: the origin of microtope zonation and mesotope diversity

Summary 1 Raised bogs of the boreal and temperate zone typically show surface patterning on two distinct organizational levels. A conspicuous pattern of alternating dry strings and wet flarks aligned perpendicular to the slope occurs in combination with other microtopes, resulting in a mesotope pattern. 2 Patterning on both these levels can be explained by a simple, spatially explicit model that assumes predominantly lateral water flow through an acrotelm that is draped over a dome-shaped catotelm. The model distinguishes two types of surface elements: hummocks with low transmissivity growing under dry conditions and hollows with high transmissivity growing under wet conditions. 3 Hummocks dam up water and stimulate the development of hollows upslope, whereas hollows effectively drain upslope areas, stimulating the development of hummocks. If the dome is steep and the recharge high enough, this leads to the development of a string–flark microtope. 4 Four distinct types of microtopes are distinguished: (i) areas entirely covered by hummocks, (ii) randomly arranged hummocks and hollows, (iii) string–flark striping patterns and (iv) areas entirely covered by hollows. 5 Different combinations of sharply delineated microtopes occur with different parameter settings, allowing for the classification of four types of raised bog mesotopes. In addition to such qualitative differences, the extent and composition of the microtopes vary with parameter settings, reflecting the variety observed in natural systems. 6 Our simple simulation model shows how small-scale, local processes can create a variety of large and complex landscape patterns. These patterns can be used to describe raised bogs in terms of biological entities of a higher organizational order (ecosystem biodiversity), typically recognizable in often species-poor peatland ecosystems.

[1]  John Couwenberg,et al.  A simulation model of mire patterning – revisited , 2005 .

[2]  P. Glaser,et al.  Raised bogs in eastern North America: transitions in landforms and gross stratigraphy , 1986 .

[3]  A. W. Damman,et al.  Vegetation and habitat conditions in Western Head Bog, a southern Nova Scotian plateau bog , 1981 .

[4]  P. Moore STRATIGRAPHY AND POLLEN ANALYSIS OF CLAISH MOSS, NORTH-WEST SCOTLAND: SIGNIFICANCE FOR THE ORIGIN OF SURFACE-POOLS AND FOREST HISTORY , 1977 .

[5]  Hugo Sjörs Myrvegetation i Bergslagen , 1948 .

[6]  E. Brook,et al.  Rapid Variations in Atmospheric Methane Concentration During the Past 110,000 Years , 1996, Science.

[7]  D. J. Boatman Observations on the Growth of Sphagnum Cuspidatum in a Bog Pool on the Silver Flowe National Nature Reserve , 1977 .

[8]  R. Lindsay,et al.  The use of small-scale surface patterns in the classification of British Peatlands , 1985 .

[9]  R. S. Clymo,et al.  The Limits to Peat Bog Growth , 1984 .

[10]  F. E. Egler Ecosystems of the World , 1960 .

[11]  L. R. Belyea,et al.  Carbon sequestration in peatland: patterns and mechanisms of response to climate change , 2004 .

[12]  E. Hogg Decay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised bog , 1993 .

[13]  J. van der Plicht,et al.  The Sharp Rise of Δ14C ca. 800 cal BC: Possible Causes, Related Climatic Teleconnections and the Impact on Human Environments , 1997, Radiocarbon.

[14]  D. Walker STUDIES IN THE POST-GLACIAL HISTORY OF BRITISH VEGETATION , 1955 .

[15]  R. S. Clymo,et al.  THE GROWTH OF SPHA GNUM: EXPERIMENTS ON, AND SIMULATION OF, SOME EFFECTS OF LIGHT FLUX AND WATER-TABLE DEPTH , 1983 .

[16]  E. Karofeld The dynamics of the formation and development of hollows in raised bogs in Estonia , 1998 .

[17]  R. S. Clymo,et al.  The Ecology of Sphagnum , 1982 .

[18]  G. Svensson FOSSIL PLANT COMMUNITIES AND REGENERATION PATTERNS ON A RAISED BOG IN SOUTH SWEDEN , 1988 .

[19]  F. E. Wickman The maximum height of raised bogs and a note on the motion of water in soligenous mires , 1951 .

[20]  L. Koutaniemi,et al.  Twenty‐one years of string movements on the Liippasuo aapa mire, Finland , 1999 .

[21]  J. van der Plicht,et al.  Changes in solar activity and Holocene climatic shifts derived from 14C wiggle-match dated peat deposits , 2004 .

[22]  D. Foster,et al.  Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada , 1988 .

[23]  Väinö Auer Über die Entstehung der Stränge auf den Torfmooren. , 2022 .

[24]  W. A. Casparie Bult-und schlenkenbildung in Hochmoortorf , 2004, Vegetatio.

[25]  GEOGRAPHICAL CHANGES IN THE VEGETATION PATTERN OF RAISED BOGS IN THE BAY OF FUNDY REGION OF MAINE AND NEW BRUNSWICK , 1977 .

[26]  S. Bayley,et al.  Growth, Production, and Decomposition Dynamics of Sphagnum under Natural and Experimentally Acidified Conditions , 1990 .

[27]  R. Lindsay Bogs: the ecology, classification and conservation of ombrotrophic mires , 1995 .

[28]  B. Geel,et al.  Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence , 2002 .

[29]  C. Weber Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta, mit vergleichenden Ausblicken auf andere Hochmoore der Erde , 1902 .

[30]  D. Walker,et al.  Stratigraphic Evidence of Regeneration in Some Irish Bogs , 1961 .

[31]  D. Vitt Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients , 1990 .

[32]  M. Rietkerk,et al.  A Putative Mechanism for Bog Patterning , 2004, The American Naturalist.

[33]  H. Sjors Oberflachenmuster in den borealen Totfgebieten , 1961 .

[34]  H. A. P. Ingram,et al.  Botanisch-Geologische Moorkunde. , 1978 .

[35]  H. Ingram,et al.  Transmission of Water Through Peat , 1975 .

[36]  W. A. Casparie Bog development in southeastern Drenthe (The Netherlands) , 1972, Vegetatio.

[37]  V. Masing 3 – Estonian Bogs: Plant Cover, Succession and Classification , 1984 .

[38]  H. Ingram SOIL LAYERS IN MIRES: FUNCTION AND TERMINOLOGY , 1978 .

[39]  W. Pearsall Two Blanket-Bogs in Sutherland , 1956 .

[40]  R. S. Clymo,et al.  Water Movement of Mirelands. , 1981 .

[41]  R. S. Clymo,et al.  Feedback control of the rate of peat formation , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  F. Overbeck,et al.  Über das Wachstum und den Wasserhaushalt einiger Hochmoorsphagnen , 1957 .

[43]  A. R. Clapham,et al.  Studies in the Post-glacial history of British vegetation. VIII Swamping surfaces in peats of the Somerset Levels IX. Prehistoric trackways in the Somerset Levels , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[44]  Antti Tanttu Ueber die Entstehung der Bülten und Stränge der Moore , 1915 .

[45]  H. Ingram,et al.  Size and shape in raised mire ecosystems: a geophysical model , 1982, Nature.

[46]  D. F. Grigal,et al.  A simulation model of mire patterning , 1988 .

[47]  M. Rietkerk,et al.  Self-Organized Patchiness and Catastrophic Shifts in Ecosystems , 2004, Science.