Crustal structure of southern Burkina Faso inferred from magnetotelluric, gravity and magnetic data

Abstract Understanding the architecture of the West African craton at depth is essential to be able to reconstruct its evolution. Our study focuses on the crustal imaging of structures and geometries characterizing the crust of the Leo-Man shield with broadband and long period magnetotelluric data collected in southern Burkina Faso and covering a 220 km long profile. The resulting 3D resistivity crustal model highlights the distribution of the granite-greenstone assemblages with depth showing excellent correlation with mapped surficial lithologies. The whole crust of southern Burkina Faso is resistive, with lateral as opposed to vertical major resistivity contrasts, reflecting the location of major-scale shear zones characterizing this part of the Baoule-Mossi domain. Ground gravity data acquired along the same line as the MT data were also modeled and show relatively good correspondence with the resistivity model. The new resistivity and gravity models compared with results from joint inversion of gravity and aeromagnetic data highlight significant changes between the greenstone belts and granitoid domains along the profile. The comparison of the geophysics with the geology enables us to define new depth constraints of the main tectonic features in the area. The observed large scale dipping shear zones favour the model of crustal building through major parallel thrust faults.

[1]  P. Wannamaker Comment on “The petrologic case for a dry lower crust” by Bruce W. D. Yardley and John W. Valley , 2000 .

[2]  M. Pasyanos,et al.  A top to bottom lithospheric study of Africa and Arabia , 2006 .

[3]  D. Davis,et al.  Two generations of Birimian (Paleoproterozoic) volcanic belts in northeastern Côte d'Ivoire (West Africa): consequences for the ‘Birimian controversy’ , 1996 .

[4]  M. Jessell,et al.  The geophysical signatures of the West African Craton , 2016 .

[5]  Mark Jessell,et al.  A geophysically constrained litho-structural analysis of the Eburnean greenstone belts and associated granitoid domains, Burkina Faso, West Africa , 2011 .

[6]  Alan G. Jones,et al.  Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling , 2011 .

[7]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[8]  M. Jessell,et al.  Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2-2.0Ga), western Burkina Faso , 2011 .

[9]  Juanjo Ledo,et al.  2-D Versus 3-D Magnetotelluric Data Interpretation , 2005 .

[10]  J. Peucat,et al.  Petrogenesis of juvenile-type Birimian (Paleoproterozoic) granitoids in Central Côte-d'Ivoire, West Africa: geochemistry and geochronology , 1998 .

[11]  P. Barbey,et al.  Mechanisms of pluton emplacement and structural evolution of a 2.1 Ga juvenile continental crust: the Birimian of southwestern Niger , 1995 .

[12]  D. Davis,et al.  Explanatory Notes for the Geological Map of - Southwest Ghana 1:100,000 - Sekondi (0402A) and Axim (0403B) Sheets , 1999 .

[13]  T. Yoshino,et al.  Unstable graphite films on grain boundaries in crustal rocks , 2011 .

[14]  N. Clauer,et al.  Genesis and Geodynamic Evolution of the Taoudeni Cratonic Basin (Upper Precambrian and Paleozoic), Western Africa , 2013 .

[15]  M. Lompo Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics , 2010 .

[16]  Alan G. Jones,et al.  The magnetotelluric method : theory and practice , 2012 .

[17]  Alan G. Jones,et al.  Electric lithosphere of the Slave craton , 2001 .

[18]  P. Renne,et al.  Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re–Os organic-rich sediments systematics , 2010 .

[19]  Donald W. Davis,et al.  UPb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa , 1994 .

[20]  R. Hyndman,et al.  The origin of electrically conductive lower continental crust: saline water or graphite? , 1993 .

[21]  P. Glover Graphite and electrical conductivity in the lower continental crust: A review , 1996 .

[22]  Alan G. Jones,et al.  Northward channel flow in northern Tibet revealed from 3D magnetotelluric modelling , 2014 .

[23]  Marianne Mareschal,et al.  Modelling of natural sources of magnetospheric origin in the interpretation of regional induction studies: A review , 1986 .

[24]  F. Albarède,et al.  A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion , 1990 .

[25]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[26]  J. Pupin,et al.  Origin and age of Paleoproterozoic conglomerates and sandstones of the Tarkwaian Group in Burkina Faso, West Africa , 1996 .

[27]  M. Ritz Inhomogeneous Structure of the Senegal Lithosphere From Deep Magnetotelluric Soundings , 1984 .

[28]  H. Bibby,et al.  Anisotropy and phase splits in magnetotellurics , 2006 .

[29]  Alan G. Jones,et al.  MT and reflection: an essential combination , 1987 .

[30]  H. Bibby,et al.  The magnetotelluric phase tensor , 2004 .

[31]  V. Machovič,et al.  Graphitization of organic matter and fluid‐deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya‐Goren greenstone belt (Burkina Faso, West Africa) , 2008 .

[32]  L. Gallardo,et al.  New insights into Archean granite-greenstone architecture through joint gravity and magnetic inversion , 2012 .

[33]  D. Béziat,et al.  A Paleoproterozoic ultramafic-mafic assemblage and associated volcanic rocks of the Boromo greenstone belt: fractionates originating from island-arc volcanic activity in the West African craton , 2000 .

[34]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[35]  B. Bessoles GEOLOGIE DE L'AFRIQUE : LE CRATON OUEST AFRICAIN , 1977 .

[36]  M. Jessell,et al.  Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton , 2015 .

[37]  Georges Balmino,et al.  Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies , 2012, Journal of Geodesy.

[38]  L. Gallardo Multiple cross‐gradient joint inversion for geospectral imaging , 2007 .

[39]  Alan G. Jones,et al.  Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: Constraints from broadband magnetotellurics , 2009 .

[40]  Alan G. Jones,et al.  Magnetotelluric transfer function estimation improvement by a coherence‐based rejection technique , 1984 .

[41]  Alan G. Jones,et al.  Central Baffin electromagnetic experiment (CBEX): mapping the North American Central Plains (NACP) conductivity anomaly in the Canadian arctic , 2005 .

[42]  B. Yardley,et al.  The petrologic case for a dry lower crust , 1997 .

[43]  C. Gumiaux,et al.  Evolution of a Paleoproterozoic “weak type” orogeny in the West African Craton (Ivory Coast) , 2009 .

[44]  Alan G. Jones,et al.  Lithospheric geometry of the Wopmay orogen from a Slave craton to Bear Province magnetotelluric transect , 2009 .

[45]  L. Gallardo,et al.  Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion , 2016, International Journal of Earth Sciences.

[46]  G. Heinson,et al.  Magnetotelluric constraints on subduction polarity: reversing reconstruction models for Proterozoic Australia , 2009 .

[47]  C. Guerrot,et al.  The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling , 2006 .

[48]  Alan G. Jones,et al.  Tectonic model of the Limpopo belt: Constraints from magnetotelluric data , 2013 .

[49]  M. Schwartz,et al.  The Perkoa Zinc Deposit, Burkina Faso , 2003 .

[50]  J. Milési,et al.  The Archaean/Proterozoic contact zone in West Africa: a mountain belt of décollement thrusting and folding on a continental margin related to 2.1 Ga convergence of Archaean cratons? , 1994 .

[51]  Alan G. Jones,et al.  The inability of magnetotelluric off-diagonal impedance tensor elements to sense oblique conductors in three-dimensional inversion , 2014 .

[52]  John Clarke,et al.  Magnetotellurics with a remote magnetic reference , 1979 .

[53]  A. Leube,et al.  The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization , 1990 .

[54]  M. Ritz Use of the magnetotelluric method for a better understanding of the West African Shield , 1983 .

[55]  M. Yu. Smirnov,et al.  Magnetotelluric data processing with a robust statistical procedure having a high breakdown point , 2003 .