Time-invariance estimating equations

We describe a general method for deriving estimators of the parameter of a statistical model, with particular relevance to highly structured stochastic systems such as spatial random processes and 'graphical' conditional independence models. The method is based on representing the stochastic model X as the equilibrium distribution of an auxiliary Markov process Y = (Yt, t > 0) where the discrete or continuous 'time' index t is to be understood as a fictional extra dimension added to the original setting. The parameter estimate 0 is obtained by equating to zero the generator of Y applied to a suitable statistic and evaluated at the data x. This produces an unbiased estimating equation for 0. Natural special cases include maximum likelihood, the method of moments, the reduced sample estimator in survival analysis, the maximum pseudolikelihood estimator for random fields and for point processes, the Takacs-Fiksel method for point processes, 'variational' estimators for random fields and multivariate distributions, and many standard estimators in stochastic geometry. The approach has some affinity with the Stein-Chen method for distributional approximation.

[1]  P. M. Prenter,et al.  Exponential spaces and counting processes , 1972 .

[2]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[3]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[4]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[5]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[6]  L. Santaló Integral geometry and geometric probability , 1976 .

[7]  Nguyen Xuan Xanh,et al.  Punktprozesse mit Wechselwirkung , 1976 .

[8]  H. Groemer On translative integral geometry , 1977 .

[9]  J. Lumley AUSTRALIA , 1920, The Lancet.

[10]  Anthony Unwin,et al.  Reversibility and Stochastic Networks , 1980 .

[11]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[12]  Y. Ogata,et al.  Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure , 1981 .

[13]  J. Besag,et al.  Point process limits of lattice processes , 1982, Journal of Applied Probability.

[14]  O. Kallenberg Random Measures , 1983 .

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Thomas Fiksel,et al.  Estimation of Parametrized Pair Potentials of Marked and Non-marked Gibbsian Point Processes , 1984, J. Inf. Process. Cybern..

[18]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[19]  C. Stein Approximate computation of expectations , 1986 .

[20]  R. Takacs Estimator for the pair–potential of a gibbsian point process , 1986 .

[21]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[22]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[23]  B. Ripley Statistical inference for spatial processes , 1990 .

[24]  T. Fiksel Estimation of interaction potentials of gibbsian point processes , 1988 .

[25]  Jesper Møller On the rate of convergence of spatial birth-and-death processes , 1989 .

[26]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[27]  D. Geman Random fields and inverse problems in imaging , 1990 .

[28]  L. Gordon,et al.  Poisson Approximation and the Chen-Stein Method , 1990 .

[29]  W. Weil Iterations of translative integral formulae and non-isotropic Poisson processes of particles , 1990 .

[30]  N. H. Bingham,et al.  An Introduction to the Theory of Coverage Processes , 1990 .

[31]  J. Seaman Introduction to the theory of coverage processes , 1990 .

[32]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[33]  A. Barbour,et al.  Poisson Approximation , 1992 .

[34]  F. Comets On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice , 1992 .

[35]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[36]  Adrian Baddeley,et al.  Kaplan-Meier estimators of interpoint distance distributions for spatial point processes , 1993 .

[37]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[38]  B. Gidas,et al.  A Variational Method for Estimating the Parameters of MRF from Complete or Incomplete Data , 1993 .

[39]  H. Künsch,et al.  On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes , 1994, Annals of the Institute of Statistical Mathematics.

[40]  P. Diggle,et al.  On parameter estimation for pairwise interaction point processes , 1994 .

[41]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[42]  Richard D. Gill,et al.  Lectures on survival analysis , 1994 .

[43]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[44]  Xavier Guyon,et al.  Random fields on a network , 1995 .

[45]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[46]  Martin Janzura,et al.  Asymptotic results in parameter estimation for Gibbs random fields , 1997, Kybernetika.

[47]  A central limit theorem for conditionally centred random fields with an application to Markov fields , 1998 .

[48]  Michael Sørensen,et al.  Estimating equations based on eigenfunctions for a discretely observed diffusion process , 1999 .