Room temperature terahertz semiconductor frequency comb

[1]  Chris Martens,et al.  Theory , 1934, Secrets in Global Governance.

[2]  Mattias Beck,et al.  Optomechanical control of quantum cascade laser frequency combs , 2019, OPTO.

[3]  Qing Hu,et al.  Terahertz hyperspectral imaging with dual chip-scale combs , 2018, Optica.

[4]  A. Davies,et al.  High Dynamic Range, Heterogeneous, Terahertz Quantum Cascade Lasers Featuring Thermally Tunable Frequency Comb Operation over a Broad Current Range , 2018, ACS Photonics.

[5]  F. Capasso,et al.  Widely tunable harmonic frequency comb in a quantum cascade laser , 2018, Applied Physics Letters.

[6]  Mattias Beck,et al.  Evidence of linear chirp in mid-infrared quantum cascade lasers , 2018, Optica.

[7]  Manijeh Razeghi,et al.  Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy , 2018 .

[8]  Manijeh Razeghi,et al.  Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited]. , 2017, Applied optics.

[9]  Yves Bidaux,et al.  Dual comb operation of λ ̃ 8.2 μm quantum cascade laser frequency comb with 1 W optical power , 2017 .

[10]  Federico Capasso,et al.  Self-starting harmonic frequency comb generation in a quantum cascade laser , 2017, 1709.02887.

[11]  Jacob B. Khurgin,et al.  Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers , 2017 .

[12]  Manijeh Razeghi,et al.  Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output , 2017 .

[13]  A. Bismuto,et al.  Plasmon-enhanced waveguide for dispersion compensation in mid-infrared quantum cascade laser frequency combs. , 2017, Optics letters.

[14]  Manijeh Razeghi,et al.  High efficiency quantum cascade laser frequency comb , 2017, Scientific Reports.

[15]  M. Beck,et al.  Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation , 2016, 1612.07594.

[16]  Mattias Beck,et al.  Ultra-broadband quantum cascade laser operating from 1.88 to 3.82 THz , 2016, 1612.07594.

[17]  C. Zah,et al.  Single-mode instability in standing-wave lasers: The quantum cascade laser as a self-pumped parametric oscillator , 2016, 1711.00187.

[18]  Tadataka Edamura,et al.  Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. , 2016, Optics express.

[19]  Qing Hu,et al.  Terahertz multiheterodyne spectroscopy using laser frequency combs , 2016, 1604.01048.

[20]  Manijeh Razeghi,et al.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers , 2016, Scientific Reports.

[21]  D. Burghoff,et al.  Terahertz multi-heterodyne spectroscopy using laser frequency combs , 2016 .

[22]  Mattias Beck,et al.  Dispersion engineering of Quantum Cascade Lasers frequency combs , 2015, 1509.08856.

[23]  S. Diddams,et al.  Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. , 2015, Optics express.

[24]  Jerome Faist,et al.  Intrinsic linewidth of quantum cascade laser frequency combs , 2015, 1506.06262.

[25]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[26]  Carlo Sirtori,et al.  High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm , 2015 .

[27]  Mattias Beck,et al.  Octave-spanning semiconductor laser , 2014, Nature Photonics.

[28]  H. Grahn,et al.  Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser. , 2014, Optics express.

[29]  Manijeh Razeghi,et al.  Widely tunable room temperature semiconductor terahertz source , 2014 .

[30]  Seungyong Jung,et al.  Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources , 2014, Nature Communications.

[31]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[32]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[33]  S. J. B. Yoo,et al.  Terahertz Information and Signal Processing by RF-Photonics , 2012, IEEE Transactions on Terahertz Science and Technology.

[34]  Manijeh Razeghi,et al.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers , 2011 .

[35]  S. Borri,et al.  Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. , 2011, Optics express.

[36]  K. Minoshima,et al.  Terahertz Frequency Metrology Based on Frequency Comb , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Qi Jie Wang,et al.  Gain competition in dual wavelength quantum cascade lasers. , 2010, Optics express.

[38]  Federico Capasso,et al.  Mode-locked pulses from mid-infrared quantum cascade lasers. , 2009, Optics express.

[39]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[40]  Federico Capasso,et al.  Stable mode-locked pulses from mid-infrared semiconductor lasers , 2009, 0903.4385.

[41]  Derryck T. Reid,et al.  Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators , 2008 .

[42]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[43]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[44]  Federico Capasso,et al.  Resonant second-order nonlinear optical processes in quantum cascade lasers. , 2003, Physical review letters.

[45]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[46]  Shin Arahira,et al.  Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes , 1996 .

[47]  F. Kärtner,et al.  Pulse shortening in a Nd:glass laser by gain reshaping and soliton formation. , 1994, Optics letters.

[48]  Erich P. Ippen,et al.  Principles of passive mode locking , 1994 .

[49]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[50]  A. Siegman,et al.  FM and AM mode locking of the homogeneous laser - Part I: Theory , 1970 .