Interactive Cognitive Assessment Tools: A Case Study on Digital Pens for the Clinical Assessment of Dementia

Interactive cognitive assessment tools may be valuable for doctors and therapists to reduce costs and improve quality in healthcare systems. Use cases and scenarios include the assessment of dementia. In this paper, we present our approach to the semi-automatic assessment of dementia. We describe a case study with digital pens for the patients including background, problem description and possible solutions. We conclude with lessons learned when implementing digital tests, and a generalisation for use outside the cognitive impairments field.

[1]  Louis-Philippe Morency,et al.  OpenFace 2.0: Facial Behavior Analysis Toolkit , 2018, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[2]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Bongshin Lee,et al.  Self-tracking for Mental Wellness: Understanding Expert Perspectives and Student Experiences , 2017, CHI.

[5]  Daniel Sonntag,et al.  Kognit: Intelligent Cognitive Enhancement Technology by Cognitive Models and Mixed Reality for Dementia Patients , 2015, AAAI Fall Symposia.

[6]  Fang Chen,et al.  Dynamic Handwriting Signal Features Predict Domain Expertise , 2018, ACM Trans. Interact. Intell. Syst..

[7]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[8]  CTC WP4 Usability Guidelines for Use Case Applications , 2010 .

[9]  Björn W. Schuller,et al.  Recent developments in openSMILE, the munich open-source multimedia feature extractor , 2013, ACM Multimedia.

[10]  Sharon Oviatt,et al.  The Design of Future Educational Interfaces , 2013 .

[11]  Daniel Sonntag,et al.  Integrating Digital Pens in Breast Imaging for Instant Knowledge Acquisition , 2014, AI Mag..

[12]  H. Vankova Mini Mental State , 2010 .

[13]  P. Fischer,et al.  The A-K-T ("Alters-Konzentrations-Test") a new psychometric test for geriatric patients. , 1989, Functional neurology.

[14]  Daniel Sonntag,et al.  A categorisation and implementation of digital pen features for behaviour characterisation , 2018, ArXiv.

[15]  Kallirroi Georgila,et al.  SimSensei kiosk: a virtual human interviewer for healthcare decision support , 2014, AAMAS.

[16]  Daniel Sonntag,et al.  Interakt - A Multimodal Multisensory Interactive Cognitive Assessment Tool , 2017, ArXiv.

[17]  D. Arciniegas,et al.  Clock-drawing performance predicts inpatient rehabilitation outcomes after traumatic brain injury. , 2011, The Journal of neuropsychiatry and clinical neurosciences.

[18]  Daniel Sonntag,et al.  Persuasive AI Technologies for Healthcare Systems , 2016, AAAI Fall Symposia.

[19]  Kenneth D. Forbus,et al.  CogSketch: open-domain sketch understanding for cognitive science research and for education , 2008, SBM'08.

[20]  R. Mohs,et al.  Consortium to establish a registry for Alzheimer's disease (CERAD) clinical and neuropsychological assessment of Alzheimer's disease. , 2002, Psychopharmacology bulletin.

[21]  Steve Whittaker,et al.  Finding the Adaptive Sweet Spot: Balancing Compliance and Achievement in Automated Stress Reduction , 2015, CHI.

[22]  Jef Raskin,et al.  The Humane Interface: New Directions for Designing Interactive Systems , 2000 .

[23]  Daniel Sonntag,et al.  Error-aware gaze-based interfaces for robust mobile gaze interaction , 2018, ETRA.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Daniel N. Allen,et al.  Trail-Making Test , 2010 .

[26]  Robert Neßelrath,et al.  SiAM-dp: an open development platform for massively multimodal dialogue systems in cyber-physical environments , 2015 .

[27]  S. Lupien,et al.  The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition , 2007, Brain and Cognition.

[28]  Fernando De la Torre,et al.  Detecting depression from facial actions and vocal prosody , 2009, 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops.

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Jakob Nielsen,et al.  Usability inspection methods , 1994, CHI 95 Conference Companion.

[32]  J. Kessler,et al.  DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia , 2004, International journal of geriatric psychiatry.

[33]  M. Freedman,et al.  Clock Drawing: A Neuropsychological Analysis , 1994 .

[34]  Volker Tresp,et al.  The Clinical Data Intelligence Project , 2016, Informatik-Spektrum.

[35]  Andrew M. Tyrrell,et al.  Automated scoring of a neuropsychological test: the Rey Osterrieth complex figure , 2000, Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future.

[36]  Randall Davis,et al.  THink: Inferring Cognitive Status from Subtle Behaviors , 2014, AI Mag..

[37]  Neema Moraveji,et al.  Towards stress-less user interfaces: 10 design heuristics based on the psychophysiology of stress , 2012, CHI Extended Abstracts.

[38]  Cynthia Rudin,et al.  Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test , 2015, Machine Learning.

[39]  Daniel Sonntag,et al.  Robot Companions and Smartpens for Improved Social Communication of Dementia Patients , 2015, IUI Companion.