Quantum Attacks on Public-Key Cryptosystems

The cryptosystems based on the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem (ECDLP) are essentially the only three types of practical public-key cryptosystems in use. The security of these cryptosystems relies heavily on these three infeasible problems, as no polynomial-time algorithms exist for them so far. However, polynomial-time quantum algorithms for IFP, DLP and ECDLP do exist, provided that a practical quantum computer exists. Quantum Attacks on Public-Key Cryptosystems presemts almost allknown quantum computing based attacks on public-key cryptosystems, with an emphasis on quantum algorithms for IFP, DLP, and ECDLP. It also discusses some quantum resistant cryptosystems to replace the IFP, DLP and ECDLP based cryptosystems. This book is intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the field.

[1]  Carl Friedrich Gauß Carl Friedrich Gauss' Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae. Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó. ). Deutsch hrsg. von H. Mas , 1889 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  H. S. Allen The Quantum Theory , 1928, Nature.

[4]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[5]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  R. Lehman Factoring large integers , 1974 .

[7]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[8]  J. Pollard A monte carlo method for factorization , 1975 .

[9]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[10]  Ralph C. Merkle,et al.  Secure communications over insecure channels , 1978, CACM.

[11]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[12]  M. Rabin DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNCTIONS AS INTRACTABLE AS FACTORIZATION , 1979 .

[13]  Richard P. Brent,et al.  An improved Monte Carlo factorization algorithm , 1980 .

[14]  Helmut Hasse The Class Number , 1980 .

[15]  R. Feynman Simulating physics with computers , 1999 .

[16]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[17]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[18]  Carl Pomerance,et al.  The Quadratic Sieve Factoring Algorithm , 1985, EUROCRYPT.

[19]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[20]  J. Dixon Factorization and Primality Tests , 1984 .

[21]  Manuel Blum,et al.  An Efficient Probabilistic Public-Key Encryption Scheme Which Hides All Partial Information , 1985, CRYPTO.

[22]  H. Riesel Prime numbers and computer methods for factorization , 1985 .

[23]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[24]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[25]  Michael J. Wiener,et al.  Cryptanalysis of Short RSA Secret Exponents (Abstract) , 1990, EUROCRYPT.

[26]  A. K. Lenstra,et al.  The Development of the Number Field Sieve , 1993 .

[27]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[28]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[29]  Daniel R. Simon On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[30]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Arjen K. Lenstra,et al.  The Magic Words are Squeamish Ossifrage , 1994, ASIACRYPT.

[32]  P. L. Montgomery,et al.  A survey of modern integer factorization algorithms , 1994 .

[33]  Leonard M. Adleman,et al.  Algorithmic number theory-the complexity contribution , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[35]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[36]  J. McKee Turning Euler's Factoring Method into a Factoring Algorithm , 1996 .

[37]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[38]  James McKee,et al.  Old and New Deterministic Factoring Algorithms , 1996, ANTS.

[39]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[40]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[41]  Mike Gardner A new kind of cipher that would take millions of years to break , 1997 .

[42]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[43]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[44]  Don Coppersmith,et al.  Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities , 1997, Journal of Cryptology.

[45]  P. Shor Doc. Math. J. Dmv 1 Quantum Computing , 1998 .

[46]  Carl Pomerance,et al.  A Tale of Two Sieves , 1998 .

[47]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[48]  Dan Boneh,et al.  TWENTY YEARS OF ATTACKS ON THE RSA CRYPTOSYSTEM , 1999 .

[49]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[50]  Johann Großschädl,et al.  The Chinese Remainder Theorem and its Application in a High-Speed RSA Crypto Chip , 2000, ACSAC.

[51]  Umesh V. Vazirani,et al.  Fourier Transforms and Quantum Computation , 2000, Theoretical Aspects of Computer Science.

[52]  P. Shor INTRODUCTION TO QUANTUM ALGORITHMS , 2000, quant-ph/0005003.

[53]  Jr.,et al.  Shor's Quantum Factoring Algorithm , 2000, quant-ph/0010034.

[54]  Stefan Katzenbeisser,et al.  Recent Advances in RSA Cryptography , 2001, Advances in Information Security.

[55]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[56]  M.E. Hellman,et al.  An overview of public key cryptography , 1978, IEEE Communications Magazine.

[57]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[58]  Wade Trappe,et al.  Introduction to Cryptography with Coding Theory , 2002 .

[59]  P. K. Aravind,et al.  A pseudo-simulation of Shor's quantum factoring algorithm , 2002 .

[60]  R. Mollin RSA and Public-Key Cryptography , 2002 .

[61]  Peter W. Shor,et al.  Why haven't more quantum algorithms been found? , 2003, JACM.

[62]  Andrew Chi-Chih Yao,et al.  Classical physics and the Church--Turing Thesis , 2003, JACM.

[63]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[64]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[65]  Stelvio Cimato,et al.  Encyclopedia of Cryptography and Security , 2005 .

[66]  Weng-Long Chang,et al.  Fast parallel molecular algorithms for DNA-based computation: factoring integers , 2005, IEEE Transactions on NanoBioscience.

[67]  D. Browne Efficient classical simulation of the quantum Fourier transform , 2006, quant-ph/0612021.

[68]  Jean-Sébastien Coron,et al.  Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring , 2006, Journal of Cryptology.

[69]  N. Mermin Quantum Computer Science , 2007 .

[70]  Rodney Van Meter,et al.  Architecture of a Quantum Multicomputer Implementing Shor's Algorithm , 2008, TQC.

[71]  Weng-Long Chang,et al.  Fast parallel DNA-based algorithms for molecular computation: discrete logarithm , 2011, The Journal of Supercomputing.

[72]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[73]  M. Hinek Cryptanalysis of RSA and Its Variants , 2009 .

[74]  Adam J. Elbirt Understanding and Applying Cryptography and Data Security , 2009 .

[75]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[76]  Colin P. Williams Explorations in Quantum Computing, Second Edition , 2011, Texts in Computer Science.

[77]  Minyi Guo,et al.  Molecular solutions of the RSA public-key cryptosystem on a DNA-based computer , 2012, The Journal of Supercomputing.

[78]  Arjen K. Lenstra Integer Factoring , 2011, Encyclopedia of Cryptography and Security.

[79]  S. C. Coutinho Review of primality testing and integer factorization in public key cryptography by Song Y. Yan , 2012, SIGA.

[80]  John M. Pollard,et al.  Kangaroos, Monopoly and Discrete Logarithms , 2015, Journal of Cryptology.