Inferential procedures for partially observed functional data

In functional data analysis it is usually assumed that all functions are completely, densely or sparsely observed on the same domain. Recent applications have brought attention to situations where each functional variable may be observed only on a subset of the domain while no information about the function is available on the complement. Various advanced methods for such partially observed functional data have already been developed but, interestingly, some essential methods, such as K-sample tests of equal means or covariances and confidence intervals for eigenvalues and eigenfunctions, are lacking. Without requiring any complete curves in the data, we derive asymptotic distributions of estimators of the mean function, covariance operator and eigenelements and construct hypothesis tests and confidence intervals. To overcome practical difficulties with storing large objects in computer memory, which arise due to partial observation, we use the nonparametric bootstrap approach. The proposed methods are investigated theoretically, in simulations and on a fragmentary functional data set from medical research.

[1]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[2]  P. Kokoszka,et al.  Introduction to Functional Data Analysis , 2017 .

[3]  John A. D. Aston,et al.  Tests for separability in nonparametric covariance operators of random surfaces , 2015, 1505.02023.

[4]  C. Lloyd Estimating test power adjusted for size , 2005 .

[5]  Piotr Kokoszka,et al.  Functional data analysis with increasing number of projections , 2013, J. Multivar. Anal..

[6]  Jia Guo,et al.  Testing the equality of several covariance functions for functional data: A supremum-norm based test , 2018, Comput. Stat. Data Anal..

[7]  Dominik Liebl,et al.  Partially observed functional data: The case of systematically missing parts , 2017, Comput. Stat. Data Anal..

[8]  Daniela Jarušková,et al.  Testing for a change in covariance operator , 2013 .

[9]  Piotr Kokoszka,et al.  Testing the Equality of Covariance Operators in Functional Samples , 2011, 1104.4049.

[10]  Jin-Ting Zhang,et al.  Analysis of Variance for Functional Data , 2013 .

[11]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[12]  Dominik Liebl,et al.  Modeling and forecasting electricity spot prices: A functional data perspective , 2013, 1310.1628.

[13]  Piotr Kokoszka,et al.  Evaluation of the cooling trend in the ionosphere using functional regression with incomplete curves , 2017 .

[14]  Ricardo Fraiman,et al.  An anova test for functional data , 2004, Comput. Stat. Data Anal..

[15]  Piotr Kokoszka,et al.  Estimation of a change-point in the mean function of functional data , 2009, J. Multivar. Anal..

[16]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[17]  Jin-Ting Zhang,et al.  One‐Way anova for Functional Data via Globalizing the Pointwise F‐test , 2014 .

[18]  R. Eubank,et al.  The delta method for analytic functions of random operators with application to functional data , 2007, 0711.4368.

[19]  Majid Mojirsheibani,et al.  Classification with incomplete functional covariates , 2018 .

[20]  John H. Maddocks,et al.  Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles , 2010 .

[21]  Lijian Yang,et al.  Simultaneous inference for the mean function based on dense functional data , 2012, Journal of nonparametric statistics.

[22]  Alessia Pini,et al.  The interval testing procedure: A general framework for inference in functional data analysis , 2016, Biometrics.

[23]  F. Ferraty,et al.  The Oxford Handbook of Functional Data Analysis , 2011, Oxford Handbooks Online.

[24]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[25]  Aurore Delaigle,et al.  Classification Using Censored Functional Data , 2013 .

[26]  Alois Kneip,et al.  Common Functional Principal Components , 2006, 0901.4252.

[27]  David Kraus,et al.  Components and completion of partially observed functional data , 2015 .

[28]  Piercesare Secchi,et al.  Distances and inference for covariance operators , 2014 .

[29]  Olga Vsevolozhskaya,et al.  Pairwise comparison of treatment levels in functional analysis of variance with application to erythrocyte hemolysis , 2014, 1407.8388.

[30]  Mariela Sued,et al.  Testing equality between several populations covariance operators , 2014, 1404.7080.

[31]  Federico A. Bugni SPECIFICATION TEST FOR MISSING FUNCTIONAL DATA , 2011, Econometric Theory.

[32]  André Mas,et al.  Testing for the Mean of Random Curves: A Penalization Approach , 2007 .

[33]  Ciprian M Crainiceanu,et al.  Variable-Domain Functional Regression for Modeling ICU Data , 2014, Journal of the American Statistical Association.

[34]  Piotr Kokoszka,et al.  Testing the stability of the functional autoregressive process , 2010, J. Multivar. Anal..

[35]  Ron Reeder,et al.  Estimation of the mean of functional time series and a two‐sample problem , 2011, 1105.0019.

[36]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[37]  Piotr Kokoszka,et al.  Asymptotic normality of the principal components of functional time series , 2013 .

[38]  David S. Gilliam,et al.  The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..

[39]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[40]  Marie-Hélène Descary Recovering covariance from functional fragments , 2017, Biometrika.

[41]  Heng Peng,et al.  Two Samples Tests for Functional Data , 2010 .

[42]  Dylan S. Small,et al.  Equivalence testing for functional data with an application to comparing pulmonary function devices , 2014, 1407.5079.

[43]  Dominik Liebl Nonparametric testing for differences in electricity prices: The case of the Fukushima nuclear accident , 2017, The Annals of Applied Statistics.

[44]  Aurore Delaigle,et al.  Approximating fragmented functional data by segments of Markov chains , 2016 .

[45]  John A. D. Aston,et al.  Inference on Covariance Operators via Concentration Inequalities: k-sample Tests, Classification, and Clustering via Rademacher Complexities , 2016, Sankhya A.

[46]  Avishai Mandelbaum,et al.  Predicting the continuation of a function with applications to call center data , 2014 .

[47]  Theofanis Sapatinas,et al.  Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data , 2016 .

[48]  Pierpaolo Brutti,et al.  PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set , 2018 .

[49]  Jin-Ting Zhang,et al.  New Tests for Equality of Several Covariance Functions for Functional Data , 2018, Journal of the American Statistical Association.

[50]  Marco Stefanucci,et al.  Classification of functional fragments by regularized linear classifiers with domain selection , 2017, Biometrika.

[51]  Alessia Pini,et al.  Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles , 2019, J. Multivar. Anal..

[52]  Victor M. Panaretos,et al.  Dispersion operators and resistant second-order functional data analysis , 2012 .

[53]  Hans-Georg Müller,et al.  Dynamic Modeling of Conditional Quantile Trajectories, With Application to Longitudinal Snippet Data , 2018, Journal of the American Statistical Association.

[54]  Piercesare Secchi,et al.  Permutation tests for the equality of covariance operators of functional data with applications to evolutionary biology , 2017, 1701.05870.

[55]  Alessia Pini,et al.  Hotelling's T2 in separable Hilbert spaces , 2018, J. Multivar. Anal..