X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation

Abstract Pyrrhotite (Fe7S8) fractured under high vacuum (10−7 Pa) and reacted with air for 6.5 and fifty hours was analyzed using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). XPS iron data from fresh surfaces indicate 32% Fe(III) and 68% Fe(II), both bonded to sulphur. The result agrees closely with stoichiometry which suggests 29% Fe(III) in the pyrrhotite studied. This is the first spectroscopic evidence to indicate Fe(III) in pyrrhotite. Sulphur is present primarily as monosulphide (S2−), with minor amounts of disulphide (S22−) and polysulphide (Sn2−). XPS examination of 6.5 hour air-oxidized surfaces indicates 58% Fe(III) and 42% Fe(II). Fe(III) is bonded to oxygen and most Fe(II) remains bonded to sulphur. XPS iron and oxygen data suggest a Fe(III)-oxyhydroxide to be the species forming. Sulphur spectra demonstrate a range of oxidation states from S2− (monosulphide) to S6+ (sulphate). AES compositional depth profiles of air-oxidized surfaces display three compositional zones. After fifty hours of air oxidation the outermost layer is less than 10 Angstroms, oxygen-rich, and sulphur depleted. Immediately below the O-rich layer exists an Fe-deficient, S-rich layer that displays a continuous, gradual decrease in S Fe from the O-rich zone to that of the unaltered pyrrhotite. Quantification of depth profiles utilizing the sequential layer sputtering model (SLS) indicate alteration trends correspond compositionally to FeO1.5, FeS2, Fe2S3 and Fe7S8. Compositional zones develop by electron and iron migration towards the oxidized surface. Molecular oxygen initially taken onto the surface is reduced to O2− probably by electron transfer from the pyrrhotite interior and is facilitated by rapid electron exchange between Fe(III) and Fe(II) of the bulk solid. Vacancies inherent to nonstoichiometric pyrrhotite probably promote diffusion of iron to the surface resulting in the formation of iron oxyhydroxide species.

[1]  E. Bertaut Contribution à l'étude des structures lacunaires: la pyrrhotine , 1953 .

[2]  N. Morimoto,et al.  Crystal Structure of a Monoclinic Pyrrhotite (Fe7S8) , 1972 .

[3]  Homer D. Hagstrum,et al.  Photoelectron and Auger Spectroscopy , 1975 .

[4]  R. G. Arnold Pyrrhotite phase relation below 304 , 1969 .

[5]  H. F. Steger Oxidation of sulfide minerals: VII. Effect of temperature and relative humidity on the oxidation of pyrrhotite , 1982 .

[6]  W. Jaegermann,et al.  Photoelectrochemistry of Highly Quantum Efficient Single‐Crystalline n ‐ FeS2 (Pyrite) , 1986 .

[7]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .

[8]  M. Seah,et al.  Practical Surface Analysis , 1992 .

[9]  J. Sullivan,et al.  A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy , 1983 .

[10]  D. Treves,et al.  Mössbauer study of the magnetic structure of Fe7S8 , 1968 .

[11]  D. W. Harris,et al.  Scanning Auger microscopy as a high-resolution microprobe for geologic materials , 1986 .

[12]  F. G. Ferris,et al.  Iron oxides in acid mine drainage environments and their association with bacteria , 1989 .

[13]  G. Bancroft Mössbauer spectroscopy : an introduction for inorganic chemists and geochemists , 1973 .

[14]  I. R. Hill,et al.  Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy , 1990 .

[15]  S. Hofmann,et al.  Quantitative AES depth profiling of very thin overlayers , 1986 .

[16]  P. Auger The Auger effect , 1975 .

[17]  G. Bancroft,et al.  An XPS study of gold deposition at low temperatures on sulphide minerals: Reducing agents , 1989 .

[18]  H. Mathieu Depth Profile and Interface Analysis of Thin Films by AES and XPS , 1984 .

[19]  D. Vaughan,et al.  Mössbauer study of pyrrhotite , 1970 .

[20]  D. Mogk Application of Auger Electron Spectroscopy to studies of chemical weathering , 1990 .

[21]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .

[22]  T. White,et al.  Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies , 1992 .

[23]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[24]  N. McIntyre,et al.  X-ray photoelectron spectroscopic studies of iron oxides , 1977 .

[25]  Robert W. Gillham,et al.  Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings , 1990 .

[26]  M. W. Roberts Evidence for the role of surface transients and precursor states in determining molecular pathways in surface reactions , 1991 .

[27]  Rajendra P. Gupta,et al.  Calculation of multiplet structure of core p -vacancy levels. II , 1974 .

[28]  Detlef W. Bahnemann,et al.  Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of .alpha.-iron oxide (Fe2O3) , 1989 .

[29]  F. Michael,et al.  High resolution scanning auger microscopy of mineral surfaces , 1986 .

[30]  A. Barrie,et al.  Auger electron spectroscopy (AES) an appraisal , 1979 .

[31]  J. Mattei,et al.  Mössbauer investigation of the pyrrhotite at low temperature , 1991 .

[32]  Michael F. Hochella,et al.  Auger electron and X-ray photoelectron spectroscopies , 1988 .

[33]  H. A. Pohl The Formation and Dissolution of Metal Sulfides1 , 1954 .

[34]  J. R. Lindsay,et al.  Sputter depth profiling in mineral-surface analysis , 1988 .

[35]  J. Sanz,et al.  Depth Resolution and Quantitative Evaluation of AES Sputtering Profiles , 1984 .

[36]  F. Donald Bloss,et al.  Crystallography And Crystal Chemistry , 1971 .

[37]  R. Chaney Recent developments in spatially resolved ESCA , 1987 .

[38]  R. W. Linton,et al.  Chemical characterization of hydrous ferric oxides by x-ray photoelectron spectroscopy , 1981 .

[39]  C. F. V. Bruggen,et al.  X-ray photoelectron spectra of 3d transition metal pyrites , 1980 .

[40]  R. Woods,et al.  X-ray photoelectron spectroscopy of oxidized pyrrhotite surfaces: I. Exposure to aire , 1985 .

[41]  H. F. Steger,et al.  Oxidation of sulfide minerals, 4. Pyrite, chalcopyrite and pyrrhotite , 1978 .

[42]  Frank C. Hawthorne,et al.  Spectroscopic methods in mineralogy and geology , 1988 .